Manufacturing of tool electrodes with optimized configuration for copy-piercing electrical discharge machining by rapid prototyping method

OBRABOTKAMETALLOV MATERIAL SCIENCE Том 23 № 3 2021 EQUIPMEN . INSTRUM TS Vol. 6 No. 4 2024 5. A feed and sprue system is developed for manufacturing TE using casting technology. When evaluating the porosity, it is found that the pores are concentrated in the feed and sprue system, which has a positive eff ect on the quality of the casting. 6. Manufacturing a tool-electrode using casting technology has shown that all the accuracy and roughness parameters of the TE are within the specifi ed tolerance and correspond to the original data of the drawing. 7. An experimental study is conducted of the process of electrical discharge machining of a profi le groove with a tool-electrode, which was manufactured by the method of investment casting using an investment pattern obtained using rapid prototyping technology. It is found that the dimensions of the resulting groove meet the stated requirements. References 1. Su X., Wang G., Yu J., Jiang F., Li J., Rong Y. Predictive model of milling force for complex profi le milling. The International Journal of Advanced Manufacturing Technology, 2016, vol. 87, pp. 1653–1662. DOI: 10.1007/s00170016-8589-1. 2. Sommer D., Safi A., Esen C., Hellmann R. Additive manufacturing of Nickel-based superalloy: optimization of surface roughness using integrated high-speed milling. Proceedings of SPIE, 2024, vol. 12876. Laser 3D Manufacturing XI. DOI: 10.1117/12.3000972. 3. Gimadeev M.R., Nikitenko A.V., Berkun V.O. Infl uence of the sphero-cylindrical tool orientation angles on roughness under processing complex-profi le surfaces. Advanced Engineering Research, 2023, vol. 23 (3), pp. 231–240. DOI: 10.23947/2687-1653-2023-23-3-231-240. 4. Ho K.H., Newman S.T. State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 2003, vol. 43 (13), pp. 1287–1300. DOI: 10.1016/S0890-6955(03)00162-7. 5. Porwal R.K., Yadava V., Ramkumar J. Micro electrical discharge machining of micro-hole. Advanced Science Engineering and Medicine, 2020, vol. 12 (11), pp. 1335–1339. DOI: 10.1166/asem.2020.2586. 6. Rajurkar K.P., Sundaram M.M., Malshe A.P. Review of electrochemical and electrodischarge machining. Procedia CIRP, 2013, vol. 6 (2), pp. 13–26. DOI: 10.1016/j.procir.2013.03.002. 7. Rathod R., Kamble D., Ambhore N. Performance evaluation of electric discharge machining of titanium alloy – a review. Journal of Engineering and Applied Science, 2022, vol. 69 (1), pp. 1–19. DOI: 10.1186/s44147-022-00118-z. 8. Melchels F.P.W., Feijen J., Grijpma D.W. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010, vol. 31, pp. 6121–6130. DOI: 10.1016/j.biomaterials.2010.04.050. 9. Tumbleston J.R., Shirvanyants D., Ermoshkin N., Janusziewicz R., Johnson A.R., Kelly D., Chen K., Pinschmidt R., Rolland J.P., Ermoshkin A., Samulski E.T., DeSimone J.M. Continuous liquid interface production of 3D objects. Science, 2015, vol. 6228 (347), pp. 1349–1352. DOI: 10.1126/science.aaa2397. 10. Shusteff M., BrowarA.E.M., KellyB.E., Henriksson J.,WeisgraberT.H., PanasR.M., FangN.X., Spadaccini C.M. One-step volumetric additive manufacturing of complex polymer structures. Science Advances, 2017, vol. 3 (12), pp. 1–7. DOI: 10.1126/sciadv.aao5496. 11. Janusziewicza R., Tumblestonb J.R., Quintanillac A.L., Mechama S.J., DeSimonea J.M. Layerless fabrication with continuous liquidinterface production. Proceedings of the National Academy of Sciences, 2016, vol. 113 (42), pp. 1–6. DOI: 10.1073/pnas.1605271113. 12. Han D., Yang C., Fangb N.X., Lee H. Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fl uidic control. Additive Manufacturing, 2019, vol. 27 (17), pp. 606–615. DOI: 10.1016/j. addma.2019.03.031. 13. Jigang H., Qin Q., Jie W. A review of stereolithography: processes and systems. Processes, 2020, vol. 8 (9), pp. 1–16. DOI: 10.3390/pr8091138. 14. Ligon S.C., Liska R., Stampfl J., Gurr M., Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chemical Reviews, 2017, vol. 117 (15). DOI: 10.1021/acs.chemrev.7b00074. 15. Stansbury J.W., Idacavage M.J. 3D printing with polymers: challenges among expanding options and opportunities. Dental Materials, 2016, vol. 32 (1), pp. 54–64. DOI: 10.1016/j.dental.2015.09.018. 16. Wang X., Jiang M., Zhou Z., Gou J., Hui D. 3D printing of polymer matrix composites: a review and prospective. Composites, Part B: Engineering, 2017, vol. 110, pp. 442–458. DOI: 10.1016/j.compositesb.2016.11.034. 17. Golabczak A., Konstantynowicz A., Golabczak M. Mathematical modelling of the physical phenomena in the interelectrode gap of the EDM process by means of cellular automata and fi eld distribution equations. Experimental and Numerical Investigation of Advanced Materials and Structures. Cham, Springer, 2013, pp. 169–184. DOI: 10.1007/9783-319-00506-5_11.

RkJQdWJsaXNoZXIy MTk0ODM1