Structure of Inconel 625 alloy blanks obtained by electric arc surfacing and electron beam surfacing

OBRABOTKAMETALLOV Vol. 26 No. 4 2024 213 MATERIAL SCIENCE liams, M.B. Katz, L.E. Levine, T.Q. Phan, T.H. Gnaeupel-Herold, D.S. Ng // Metallurgical and Materials Transactions: A. – 2017. – Vol. 48. – P. 5547–5558. – DOI: 10.1007/s11661-017-4304-6. 6. Characterization and comparison of Inconel 625 processed by selective laser melting and laser metal deposition / G. Marchese, X.G. Colera, F. Calignano, M. Lorusso, S. Biamino, P. Minetola, D. Manfredi // Advanced Engineering Materials. – 2016. – Vol. 19. – P. 1–9. – DOI: 10.1002/adem.201600635. 7. Eff ect of deposition strategy on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by pulsed plasma arc deposition / F. Xu, Y. Lv, B. Xu, Y. Liu, F. Shu, P. He // Materials & Design. – 2013. – Vol. 45. – P. 446–455. 8. Grzesik W. Hybrid additive and subtractive manufacturing processes and systems: a review // Journal of Machine Engineering. – 2018. – Vol. 18 (4). – P. 5–24. – DOI: 10.5604/01.3001.0012.7629. 9. Integrated quality ensuring technique of plasma wear resistant coatings / E. Zverev, V. Skeeba, N.V. Martyushev, P. Skeeba // Key Engineering Materials. – 2017. – Vol. 736. – P. 132–137. – DOI: 10.4028/www. scientifi c.net/KEM.736.132. 10. Dang J., Zhang H., Ming W. New observations on wear characteristics of solid Al2O3/Si3N4 ceramic tool in high speed milling of additive manufactured Ti6Al4V // Ceramics International. – 2020. – Vol. 46 (5). – P. 5876– 5886. – DOI: 10.1016/j.ceramint.2019.11.039. 11. Infl uence of shielding gas composition on structure and mechanical properties of wire and arc additive manufactured Inconel 625 / I. Jurić, I. Garašić, M. Bušić, Z. Kožuh // JOM. – 2018. – Vol. 71. – P. 703–708. – DOI: 10.1007/s11837-018-3151-2. 12. The features of steel surface hardening with high energy heating by high frequency currents and shower cooling / V. Ivancivsky, V. Skeeba, I. Bataev, D.V. Lobanov // IOP Conference Series: Materials Science and Engineering. – 2016. – Vol. 156. – P. 012025. – DOI: 10.1088/1757-899X/156/1/012025. 13. Keist J.S., Palmer T.A. Development of strengthhardness relationships in additively manufactured titanium alloys // Materials Science and Engineering: A. – 2017. – Vol. 693. – P. 214–224. – DOI: 10.1016/j. msea.2017.03.102. 14. Balovtsev S.V., Merkulova A.M. Comprehensive assessment of buildings, structures and technical devices reliability of mining enterprises // Горный информационно-аналитический бюллетень. – 2024. – № 3. – С. 170–181. – DOI: 10.25018/0236_1493_ 2024_3_0_170. 15. Cutting forces analysis in additive manufactured AISI H13 alloy / F. Montevecchi, N. Grossi, H. Takagi, A. Scippa, H. Sasahara, G. Campatelli // Procedia CIRP. – 2016. – Vol. 46. – P. 476–479. – DOI: 10.1016/j. procir.2016.04.034. 16. Microstructure and fracture behavior of TiC particles reinforced Inconel 625 composites prepared by laser additive manufacturing / M.Y. Shen, X.J. Tian, N. Liu, H.B. Tang, X. Cheng // Journal of Alloys and Compounds. – 2018. – Vol. 734. – P. 188–195. – DOI: 10.1016/j.jallcom.2017.10.280. 17. Gong Y., Li P. Analysis of tool wear performance and surface quality in post milling of additive manufactured 316L stainless steel // Journal of Mechanical Science and Technology. – 2019. – Vol. 33. – P. 2387– 2395. – DOI: 10.1007/s12206-019-0237-x. 18. Ni Ch., Zhu L., Yang Zh. Comparative investigation of tool wear mechanism and corresponding machined surface characterization in feed-direction ultrasonic vibration assisted milling of Ti–6Al–4V from dynamic view // Wear. – 2019. – Vol. 436. – P. 203006. – DOI: 10.1016/j.wear.2019.203006. 19. Xiong X., Haiou Z., GuilanW. Anewmethod of directmetal prototyping: hybrid plasma deposition andmilling // Rapid Prototyping Journal. – 2008. – Vol. 14 (1). – P. 53–56. – DOI: 10.1108/13552540810841562. 20. Nekrasova T.V., Melnikov A.G. Creation of ceramic nanocomposite material on the basis of ZrO2Y2O3-Al2O3 with improved operational properties of the working surface // Applied Mechanics and Materials. – 2013. – Vol. 379. – P. 77–81. – DOI: 10.4028/www.scientifi c.net/AMM.379.77. 21. Martyushev N., Petrenko Yu. Eff ects of crystallization conditions on lead tin bronze properties // Advanced Materials Research. – 2014. – Vol. 880. – P. 174– 178. – DOI: 10.4028/www.scientifi c.net/AMR.880.174. 22. Повышение ресурса рабочих колес центробежных насосов шахтного водоотлива / В.В. Зотов, В.У. Мнацаканян, М.М. Базлин, В.С. Лакшинский, Е.В. Дятлова // Горная промышленность. – 2024. – № 2. – С. 143–146. – DOI: 10.30686/1609-9192-20242-143-146. 23. Усанова О.Ю., Столяров В.В., Рязанцева А.В. Исследование свойств ионно-имплантированного титанового сплава с памятью формы, используемого в конструкциях горнодобывающего оборудования // Устойчивое развитие горных территорий. – 2022. – Т. 14, № 4. – С. 695–701. – DOI: 10.21177/1998-45022022-14-4-695-701. 24. Cahoon J.R., Broughton W.H., Kutzak A.R. The determination of yield strength from hardness measurements // Metallurgical Transactions. – 1971. – Vol. 2 (7). – P. 1979–1983. – DOI: 10.1007/bf02913433. 25. Change in the properties of rail steels during operation and reutilization of rails / K. Yelemessov, D. Baskanbayeva, N.V. Martyushev, V.Y. Skeeba, V.E. Gozbenko, A.I. Karlina // Metals. – 2023. – Vol. 13. – P. 1043. – DOI: 10.3390/met13061043.

RkJQdWJsaXNoZXIy MTk0ODM1