Study of surface hydrophilicity of metallic materials modified by ultraviolet laser radiation

ОБРАБОТКА МЕТАЛЛОВ Том 26 № 4 2024 228 МАТЕРИАЛОВЕДЕНИЕ bioactive coatings // Nanotechnologies in Russia. – 2009. – Vol. 4 (11–12). – P. 758–775. – DOI: 10.1134/ S1995078009110020. 7. Studying the infl uence of nanosecond pulsed laser action on the structure of submicrocrystalline titanium / Y.R. Kolobov, S.S. Manokhin, G.V. Odintsova, V.I. Betekhtin, A.G. Kadomtsev, M.V. Narykova // Technical Physics Letters. – 2021. – Vol. 47. – P. 721– 725. – DOI: 10.1134/S1063785021070245. 8. Ionin A.A., Kudryashov S.I., Samokhin A.A. Material surface ablation produced by ultrashort laser pulses // Physics-Uspekhi. – 2017. – Vol. 60. – P. 149– 160. – DOI: 10.3367/UFNe.2016.09.037974. 9. Razi S., Mollabashi M., Madanipour K. Laser processing of metallic biomaterials: an approach for surface patterning and wettability control // The European Physical Journal Plus. – 2015. – Vol. 130 (12). – Art. 247. – DOI: 10.1140/epjp/i2015-15247-5. 10. Mironov Yu.P., Meisner L.L., Lotkov A.I. The structure of titanium nickelide surface layers formed by pulsed electron-beam melting // Technical Physics. – 2008. – Vol. 53 (7). – P. 934–942. – DOI: 10.1134/ S1063784208070189. 11. LASER as a tool for surface modifi cation of dental biomaterials: a review / R. Saran, K. Ginjupalli, S.D. George, S. Chidangil, V.K. Unnikrishnan // Heliyon. – 2023. – Vol. 9 (6). – P. e17457. – DOI: 10.1016/j.heliyon.2023.e17457. 12. Ajmal S., Hashmi F.A., Imran I. Recent progress in development and applications of biomaterials // Materials Today: Proceedings. – 2022. – Vol. 62 (1). – P. 385–391. – DOI: 10.1016/j.matpr.2022.04.233. 13. Enhanced bone apposition to a chemically modifi ed SLA titanium surface / D. Buser, N. Broggini, M. Wieland, R.K. Schenk, A.J. Denzer, D.L. Cochran, B. Hoff mann, A. Lussi, S.G. Steinemann // Journal of Dental Research. – 2004. – Vol. 83. – P. 529–533. – DOI: 10.1177/154405910408300704. 14. Graded functionality obtained in NiTi shape memory alloy via a repetitive laser processing strategy / Y. Yang, Z.G. Wu, B.Y. Shen, M.Z. Wu, Z.S. Yuan, C.Y. Wang, L.C. Zhang // Journal of Materials Processing Technology. – 2021. – Vol. 296. – P. 117177. – DOI: 10.1016/j.jmatprotec.2021.117177. 15. Surface characterizations of laser modifi ed biomedical grade NiTi shape memory alloys / A. Pequegnat, A. Michael, J. Wang, K. Lian, Y. Zhou, M.I. Khan // Materials Science and Engineering: C. – 2015. – Vol. 50. – P. 367–378. – DOI: 10.1016/j. msec.2015.01.085. 16. The eff ect of fs-laser micromachining parameters on surface roughness, bio-corrosion and biocompatibility of nitinol / V. Chenrayan, V. Vaishnav, K. Shahapurkar, P. Dhanabal, M. Kalayarasan, S. Raghunath, M. Mano // Optics and Laser Technology. – 2024. – Vol. 170. – P. 110200. – DOI: 10.1016/j.optlastec.2023.110200. 17. Biocompatibility of the micro-patterned NiTi surface produced by femtosecond laser / C. Liang, H. Wang, J. Yang, B. Li, Y. Yang, H. Li // Applied Surface Science. – 2012. – Vol. 261. – P. 337–342. – DOI: 10.1016/j.apsusc.2012.08.011. 18. Surface microtexturing of Ti–6Al–4V using an ultraviolet laser system / W.-T. Hsiao, H.-C. Chang, A. Nanci, R. Durand // Materials and Design. – 2016. – Vol. 90. – P. 891–895. – DOI: 10.1016/j. matdes.2015.11.039. 19. Benay U.-Y. Mechanical performance of metallic biomaterials: fundamentals and mechanism // Multiscale cell-biomaterials interplay in musculoskeletal tissue engineering and regenerative medicine / ed. by J. Miguel Oliveira, R.L. Reis, S. Pina. – Academic Press, 2024. – Ch. 5. – P. 113–126. – ISBN 978-0-323-91821-3. – DOI: 10.1016/B978-0-323-91821-3.00011-6. 20. Biocompatibility of micro/nanostructures nitinol surface via nanosecond laser circularly scanning / S. Li, Z. Cui, W. Zhang, Y. Li, L. Li, D. Gong // Materials Letters. – 2019. –Vol. 255. – P. 126591. – DOI: 10.1016/j. matlet.2019.126591. 21. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air / J. Long, M. Zhong, H. Zhang, P. Fan // Journal of Colloid and Interface Science. – 2015. – Vol. 441. – P. 1–9. – DOI: 10.1016/j.jcis.2014.11.015. 22. Razi S., Mollabashi M., Madanipour K. Improving the hydrophilicity of metallic surfaces by nanosecond pulsed laser surface modifi cation // Journal of Laser Applications. – 2015. – Vol. 27 (4). – P. 0420061–042006-9. – DOI: 10.2351/1.4928290. 23. Es-Souni M., Es-Souni M., Fischer-Brandies H. Assessing the biocompatibility of TiNi shape memory alloys used for medical applications // Analytical and Bioanalytical Chemistry. – 2005. – Vol. 381. – P. 557– 567. – DOI: 10.1007/s00216-004-2888-3. 24. Shabalovskaya S.A. Physicochemical and biological aspects of nitinol as a biomaterial // International Materials Reviews. – 2001. – Vol. 46. – P. 233–250. – DOI: 10.1179/095066001771048745. 25. Laser-induced wettability gradient surface on NiTi alloy for improved hemocompatibility and fl ow resistance / Q. Zhang, J. Dong, M. Peng, Z. Yang, Y. Wan, F. Yao, J. Zhou, C. Ouyang, X. Deng, H. Luo // Materials Science and Engineering: C. – 2020. – Vol. 111. – P. 110847. – DOI: 10.1016/j.msec.2020.110847. 26. Structure formation on titanium during oxidation induced by cumulative pulsed Nd:YAG laser irradiation / E. György, A. Pérez del Pino, P. Serra, J.L. Morenza // Applied Physics. A, Materials Science & Processing. – 2004. – Vol. 78 (5). – P. 765–770. – DOI: 10.1007/ s00339-002-2054-8.

RkJQdWJsaXNoZXIy MTk0ODM1