Study of surface hydrophilicity of metallic materials modified by ultraviolet laser radiation

OBRABOTKAMETALLOV Vol. 26 No. 4 2024 231 MATERIAL SCIENCE 2. Filippov A.V., Shamarin N.N., Moskvichev E.N., Novitskaya O.S., Knyazhev E.O., Denisova Yu.A., Leonov A.A., Denisov V.V. Investigation of the structural-phase state and mechanical properties of ZrCrN coatings obtained by plasma-assisted vacuum arc evaporation. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24 (1), pp. 87–102. DOI: 10.17212/1994-63092022-24.1-87-102. (In Russian). 3. Yasenchuk Y.F., Gunther S.V., Kokorev O.V., Marchenko E.S., Gunther V., Baigonakova G.A., Dubovikov K.M. The infl uence of surface treatment on wettability of TiNi-based alloy. Russian Physics Journal, 2019, vol. 62 (2), pp. 333–338. DOI: 10.1007/s11182-019-01716-w. 4. Erofeev M., Ripenko V., Shulepov M., Tarasenko V. Surface treatment of metals in the plasma of a nanosecond diff use discharge at atmospheric pressure. The European Physical Journal D: Atomic, Molecular and Optical Physics, 2017, vol. 71, art. 117. DOI: 10.1140/epjd/e2017-70636-6. 5. Duan X., Yang Y., Zhang T., Zhu B., Wei G., Li H. Research progress of metal biomaterials with potential applications as cardiovascular stents and their surface treatment methods to improve biocompatibility. Heliyon, 2024, vol. 10 (4), p. e25515. DOI: 10.1016/j.heliyon.2024.e25515. 6. KolobovYu.R. Nanotechnologies for the formation ofmedical implants based on titaniumalloyswith bioactive coatings. Nanotechnologies in Russia, 2009, vol. 4 (11–12), pp. 758–775. DOI: 10.1134/S1995078009110020. 7. Kolobov Y.R., Manokhin S.S., Odintsova G.V., Betekhtin V.I., Kadomtsev A.G., Narykova M.V. Studying the Infl uence of nanosecond pulsed laser action on the structure of submicrocrystalline titanium. Technical Physics Letters, 2021, vol. 47, pp. 721–725. DOI: 10.1134/S1063785021070245. 8. Ionin A.A., Kudryashov S.I., Samokhin A.A. Material surface ablation produced by ultrashort laser pulses. Physics-Uspekhi, 2017, vol. 60, pp. 149–160. DOI: 10.3367/UFNe.2016.09.037974. 9. Razi S., Mollabashi M., Madanipour K. Laser processing of metallic biomaterials: an approach forsurface patterning and wettability control. The European Physical Journal Plus, 2015, vol. 130 (11), art. 247. DOI: 10.1140/ epjp/i2015-15247-5. 10. MironovYu.P., Meisner L.L., LotkovA.I. The structure of titanium nickelide surface layers formed by pulsed electron-beam melting. Technical Physics, 2008, vol. 53 (7), pp. 934–942. DOI: 10.1134/S1063784208070189. 11. Saran R., Ginjupalli K., George S.D., Chidangil S., Unnikrishnan V.K. LASER as a tool for surface modifi cation of dental biomaterials: a review. Heliyon, 2023, vol. 9 (6), p. e17457. DOI: 10.1016/j.heliyon.2023. e17457. 12. Ajmal S., Hashmi F.A., Imran I. Recent progress in development and applications of biomaterials. Materials Today: Proceedings, 2022, vol. 62 (1), pp. 385–391. DOI: 10.1016/j.matpr.2022.04.233. 13. Buser D., Broggini N., Wieland M., Schenk R.K., Denzer A.J., Cochran D.L., Hoff mann B., Lussi A., Steinemann S.G. Enhanced bone apposition to a chemically modifi ed SLA titanium surface. Journal of Dental Research, 2004, vol. 83, pp. 529–533. 14. Yang Y., Wu Z.G., Shen B.Y., Wu M.Z., Yuan Z.S., Wang C.Y., Zhang L.C. Graded functionality obtained in NiTi shape memory alloy via a repetitive laser processing strategy. Journal of Materials Processing Technology, 2021, vol. 296, p. 117177. DOI: 10.1016/j.jmatprotec.2021.117177. 15. Pequegnat A., Michael A., Wang J., Lian K., Zhou Y., Khan M.I. Surface characterizations of laser modifi ed biomedical grade NiTi shape memory alloys. Materials Science and Engineering: C, 2015, vol. 50, pp. 367–378. DOI: 10.1016/j.msec.2015.01.085. 16. Chenrayan V., Vaishnav V., Shahapurkar K., Dhanabal P., Kalayarasan M., Raghunath S., Mano M. The eff ect of fs-laser micromachining parameters on surface roughness, bio-corrosion and biocompatibility of nitinol. Optics and Laser Technology, 2024, vol. 170, p. 110200. DOI: 10.1016/j.optlastec.2023.110200. 17. Liang C., Wang H., Yang J., Li B., Yang Y., Li H. Biocompatibility of the micro-patterned NiTi surface produced by femtosecond laser. Applied Surface Science, 2012, vol. 261, pp. 337–342. DOI: 10.1016/j. apsusc.2012.08.011. 18. Hsiao W.-T., Chang H.-C., Nanci A., Durand R. Surface microtexturing of Ti–6Al–4V using an ultraviolet laser system. Materials and Design, 2016, vol. 90, pp. 891–895. DOI: 10.1016/j.matdes.2015.11.039. 19. Benay U.-Y. Mechanical performance of metallic biomaterials: fundamentals and mechanisms. Multiscale cell-biomaterials interplay in musculoskeletal tissue engineering and regenerative medicine. Ed. by J. Miguel Oliveira, R.L. Reis, S. Pina. Academic Press, 2024, ch. 5, pp. 113–126. ISBN 978-0-323-91821-3. DOI: 10.1016/ B978-0-323-91821-3.00011-6.

RkJQdWJsaXNoZXIy MTk0ODM1