OBRABOTKAMETALLOV Vol. 26 No. 4 2024 232 MATERIAL SCIENCE 20. Li S., Cui Z., Zhang W., Li Y., Li L., Gong D. Biocompatibility of micro/nanostructures nitinol surface via nanosecond laser circularly scanning. MaterialsLetters, 2019, vol. 255, p. 126591.DOI: 10.1016/j.matlet.2019.126591. 21. Long J., Zhong M., Zhang H., Fan P. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air. Journal of Colloid and Interface Science, 2015, vol. 441, pp. 1–9. DOI: 10.1016/j.jcis.2014.11.015. 22. Razi S., Mollabashi M., Madanipour K. Improving the hydrophilicity of metallic surfaces by nanosecond pulsed laser surface modifi cation Journal of Laser Applications, 2015, vol. 27 (4), pp. 042006-1–042006-9. DOI: 10.2351/1.4928290. 23. Es-Souni M., Es-Souni M., Fischer-Brandies H. Assessing the biocompatibility of TiNi shape memory alloys used for medical applications. Analytical and Bioanalytical Chemistry, 2005, vol. 381, pp. 557–567. DOI: 10.1007/ s00216-004-2888-3. 24. Shabalovskaya S.A. Physicochemical and biological aspects of nitinol as a biomaterial. International Materials Reviews, 2001, vol. 46, pp. 233–250. DOI: 10.1179/095066001771048745. 25. Zhang Q., Dong J., Peng M., Yang Z., Wan Y., Yao F., Zhou J., Ouyang C., Deng X., Luo H. Laser-induced wettability gradient surface on NiTi alloy for improved hemocompatibility and fl ow resistance. Materials Science and Engineering: C, 2020, vol. 111, p. 110847. DOI: 10.1016/j.msec.2020.110847. 26. György E., Pérez del Pino A., Serra P., Morenza J.L. Structure formation on titanium during oxidation induced by cumulative pulsed Nd:YAG laser irradiation. Applied Physics. A, Materials Science & Processing, 2004, vol. 78 (5), pp. 765–770. DOI: 10.1007/s00339-002-2054-8. 27. Zhu H.-Z., Zhang H.-C., Ni X.-W., Shen Z-H., Lu J. Fabrication of superhydrophilic surface on metallic nickel by sub-nanosecond laser-induced ablation. AIP Advances, 2019, vol. 9 (8), p. 085308. DOI: 10.1063/1.5111069. 28. Wang Y., Zhang M., Li K., Hu J. Study on the surface properties and biocompatibility of nanosecond laser patterned titanium alloy. Optics and Laser Technology, 2021, vol. 139, p. 106987. DOI: 10.1016/j. optlastec.2021.106987. 29. Milovanović D.S., Radak B., Gaković B.M., Batani D., Momčilović M.D., Trtica M.S. Surface morphology modifi cations of titanium based implant induced by 40 picosecond laser pulses at 266nm. Journal of Alloys and Compounds, 2010, vol. 501 (1), pp. 89–92. DOI: 10.1016/j.jallcom.2010.04.047. 30. Owens D.K., Wendt R.C. Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 1969, vol. 13 (8), pp. 1741–1747. DOI: 10.1002/app.1969.070130815. 31. Razi S., Madanipour K., Mollabashi M. Laser surface texturing of 316L stainless steel in air and water: a method for increasing hydrophilicity via direct creation of microstructures. Optics & Laser Technology, 2016, vol. 80, pp. 237–246. DOI: 10.1016/j.optlastec.2015.12.022. 32. Kietzig A., Mirvakili M., Kamal S., Englezos P. Nanopatterned metallic surfaces: their wettability and impact on ice friction. Journal of Adhesion Science and Technology, 2011, vol. 25, pp. 1293–1303. 33. Shulepov M.A., Erofeev M.V., Ripenko V.S., Tarasenko V.F. Dynamics of titanium surface characteristics after its treatment by runaway electron preionized diff use discharge. Journal of Physics: Conference Series, 2017, vol. 830, p. 012090. DOI: 10.1088/1742-6596/830/1/012090. 34. Wang R.M., Chu C.L., Hu T., Dong Y.S., Guo C., Sheng X.B., Lin P.H., Chung C.Y., Chu P.K. Surface XPS characterization of NiTi shape memory alloy after advanced oxidation processes in UV/H2O2 photocatalytic system. Applied Surface Science, 2007, vol. 253 (20), pp. 8507–8512. DOI: 10.1016/j.apsusc.2007.04.018. 35. Hashimoto K., Irie H., Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. Japanese Journal of Applied Physics, 2005, vol. 44 (12), pp. 8269–8285. DOI: 10.1143/JJAP.44.8269. 36. Miyauchi M., Nakajima A., Fujishima A., Hashimoto K., Watanabe T. Photoinduced surface reactions on TiO2 and SrTiO3 fi lms: photocatalytic oxidation and photoinduced hydrophilicity. Chemistry of Materials, 2000, vol. 12, pp. 3–5. DOI: 10.1021/cm990556p. 37. Miyauchi M., Nakajima A., Watanabe T., Hashimoto K. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin fi lms. Chemistry of Materials, 2002, vol. 14, pp. 2812–2816. DOI: 10.1021/cm020076p. 38. Gentleman M.M., Ruud J.A. Role of hydroxyls in oxide wettability. Langmuir, 2010, vol. 26 (3), pp. 1408– 1411. DOI: 10.1021/la903029c. 39. Rudakova A.V., Emelin A.V. Fotoindutsirovannoe izmenenie gidrofi l’nosti poverkhnosti tonkikh plenok [Photoinduced change in surface hydrophilicity of thin fi lms]. Kolloidnyi zhurnal = Colloid Journal, 2021, vol. 83 (1), pp. 3–34. DOI: 10.31857/S0023291221010109.
RkJQdWJsaXNoZXIy MTk0ODM1