Study of surface hydrophilicity of metallic materials modified by ultraviolet laser radiation

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 26 No. 4 2024 The main factors contributing to the increased hydrophilicity of TiNi and 0.12 C-18 Cr-9 Ni-Ti (AISI 321) steel specimens after UV laser treatment are the increased oxygen content, the formation of oxide phases, and a signifi cant increase in the polar component of free surface energy. Based on this research, it can be concluded that ultraviolet laser treatment is an eff ective way to change the wettability of the surface of metal materials. References 1. Slobodyan M.S., Markov A.B. Laser and electron-beam surface processing on TiNi shape memory alloys: a review. Russian Physics Journal, 2024, vol. 67 (5), pp. 565–615. DOI: 10.1007/s11182-024-03158-5. 2. Filippov A.V., Shamarin N.N., Moskvichev E.N., Novitskaya O.S., Knyazhev E.O., Denisova Yu.A., Leonov A.A., Denisov V.V. Investigation of the structural-phase state and mechanical properties of ZrCrN coatings obtained by plasma-assisted vacuum arc evaporation. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24 (1), pp. 87–102. DOI: 10.17212/1994-63092022-24.1-87-102. (In Russian). 3. Yasenchuk Y.F., Gunther S.V., Kokorev O.V., Marchenko E.S., Gunther V., Baigonakova G.A., Dubovikov K.M. The infl uence of surface treatment on wettability of TiNi-based alloy. Russian Physics Journal, 2019, vol. 62 (2), pp. 333–338. DOI: 10.1007/s11182-019-01716-w. 4. Erofeev M., Ripenko V., Shulepov M., Tarasenko V. Surface treatment of metals in the plasma of a nanosecond diff use discharge at atmospheric pressure. The European Physical Journal D: Atomic, Molecular and Optical Physics, 2017, vol. 71, art. 117. DOI: 10.1140/epjd/e2017-70636-6. 5. Duan X., Yang Y., Zhang T., Zhu B., Wei G., Li H. Research progress of metal biomaterials with potential applications as cardiovascular stents and their surface treatment methods to improve biocompatibility. Heliyon, 2024, vol. 10 (4), p. e25515. DOI: 10.1016/j.heliyon.2024.e25515. 6. KolobovYu.R. Nanotechnologies for the formation ofmedical implants based on titaniumalloyswith bioactive coatings. Nanotechnologies in Russia, 2009, vol. 4 (11–12), pp. 758–775. DOI: 10.1134/S1995078009110020. 7. Kolobov Y.R., Manokhin S.S., Odintsova G.V., Betekhtin V.I., Kadomtsev A.G., Narykova M.V. Studying the Infl uence of nanosecond pulsed laser action on the structure of submicrocrystalline titanium. Technical Physics Letters, 2021, vol. 47, pp. 721–725. DOI: 10.1134/S1063785021070245. 8. Ionin A.A., Kudryashov S.I., Samokhin A.A. Material surface ablation produced by ultrashort laser pulses. Physics-Uspekhi, 2017, vol. 60, pp. 149–160. DOI: 10.3367/UFNe.2016.09.037974. 9. Razi S., Mollabashi M., Madanipour K. Laser processing of metallic biomaterials: an approach forsurface patterning and wettability control. The European Physical Journal Plus, 2015, vol. 130 (11), art. 247. DOI: 10.1140/ epjp/i2015-15247-5. 10. MironovYu.P., Meisner L.L., LotkovA.I. The structure of titanium nickelide surface layers formed by pulsed electron-beam melting. Technical Physics, 2008, vol. 53 (7), pp. 934–942. DOI: 10.1134/S1063784208070189. 11. Saran R., Ginjupalli K., George S.D., Chidangil S., Unnikrishnan V.K. LASER as a tool for surface modifi cation of dental biomaterials: a review. Heliyon, 2023, vol. 9 (6), p. e17457. DOI: 10.1016/j.heliyon.2023. e17457. 12. Ajmal S., Hashmi F.A., Imran I. Recent progress in development and applications of biomaterials. Materials Today: Proceedings, 2022, vol. 62 (1), pp. 385–391. DOI: 10.1016/j.matpr.2022.04.233. 13. Buser D., Broggini N., Wieland M., Schenk R.K., Denzer A.J., Cochran D.L., Hoff mann B., Lussi A., Steinemann S.G. Enhanced bone apposition to a chemically modifi ed SLA titanium surface. Journal of Dental Research, 2004, vol. 83, pp. 529–533. 14. Yang Y., Wu Z.G., Shen B.Y., Wu M.Z., Yuan Z.S., Wang C.Y., Zhang L.C. Graded functionality obtained in NiTi shape memory alloy via a repetitive laser processing strategy. Journal of Materials Processing Technology, 2021, vol. 296, p. 117177. DOI: 10.1016/j.jmatprotec.2021.117177. 15. Pequegnat A., Michael A., Wang J., Lian K., Zhou Y., Khan M.I. Surface characterizations of laser modifi ed biomedical grade NiTi shape memory alloys. Materials Science and Engineering: C, 2015, vol. 50, pp. 367–378. DOI: 10.1016/j.msec.2015.01.085. 16. Chenrayan V., Vaishnav V., Shahapurkar K., Dhanabal P., Kalayarasan M., Raghunath S., Mano M. The eff ect of fs-laser micromachining parameters on surface roughness, bio-corrosion and biocompatibility of nitinol. Optics and Laser Technology, 2024, vol. 170, p. 110200. DOI: 10.1016/j.optlastec.2023.110200.

RkJQdWJsaXNoZXIy MTk0ODM1