Improvement the manufacturing quality of new generation heat-resistant nickel alloy products using wire electrical discharge machining

OBRABOTKAMETALLOV Vol. 27 No. 1 2025 technology Analysis of the surface quality parameter, Ra (roughness), established that the average roughness (Ra) is 1.62 μm for machined samples with a height of 10 mm. Increasing the sample height causes the surface roughness to reach 2.6 μm at the minimum mode and 3.4 μm at the maximum mode. It is established that increasing the workpiece height results in the formation of microcracks on the product surface, with the extent of cracking increasing at the maximum mode. Crack formation is attributed to the intensified interaction of unit pulses with the machined surface. Machining a 10 mm high sample showed no pores or cracks on the surface. Machining 15 mm high samples resulted in cracks on the surface, reaching lengths of up to 50‑60 μm. The study revealed that at a loading amplitude of 400 MPa, the average number of cycles reached 1.50E+05 cycles. A decrease in the number of cycles was observed with increasing loading amplitude. References 1. Nowotnik A. Nickel-based superalloys. Reference Module in Materials Science and Materials Engineering, 2016, vol. 107 (2), pp. 1–6. DOI: 10.1016/B978-0-12-803581-8.02574-1. 2. Neumeier S., Freund L.P., Göken M. Novel wrought γ/γ′ cobalt base superalloys with high strength and improved oxidation resistance. Scripta Materialia, 2015, vol. 109, pp. 104–107. DOI: 10.1016/j.scriptamat.2015.07.030. 3. Sommer D., Safi A., Esen C., Hellmann R. Additive manufacturing of Nickel-based superalloy: optimization of surface roughness using integrated high-speed milling. Proceedings of SPIE, 2024, vol. 12876. Laser 3D Manufacturing XI. DOI: 10.1117/12.3000972. 4. Inozemtsev A.A., Sandratsky V.L. Gazoturbinnye dvigateli [Gas turbine engines]. Perm’, Aviadvigatel’ Publ., 2006. 1204 p. 5. Ho K.H., Newman S.T. State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 2003, vol. 43 (13), pp. 1287–1300. DOI: 10.1016/S0890-6955(03)00162-7. 6. Rajurkar K.P., Sundaram M.M., Malshe A.P. Review of electrochemical and electrodischarge machining. Procedia CIRP, 2013, vol. 6 (2), pp. 13–26. DOI: 10.1016/j.procir.2013.03.002. 7. LotfiNeyestanak A.A., Daneshmand S. The effect of operational cutting parameters on Nitinol-60 in wire electrodischarge machining. Advances in Materials Science and Engineering, 2013, vol. 2013, pp. 1–6. DOI: 10.1155/2013/457186. 8. Sharma N., Raj T., Jangra K.K. Parameter optimization and experimental study on wire electrical discharge machining of porous Ni40Ti60 alloy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013, vol. 231 (6), pp. 956–970. DOI: 10.1177/0954405415577710. 9. Safranski D., Dupont K., Gall K. Pseudoelastic NiTiNOL in orthopaedic applications. Shape Memory and Superelasticity, 2020, vol. 6, pp. 332–341. DOI: 10.1007/s40830-020-00294-y. 10. Rathod R., Kamble D., Ambhore N. Performance evaluation of electric discharge machining of titanium alloy – a review. Journal of Engineering and Applied Science, 2022, vol. 69 (1), pp. 1–19. DOI: 10.1186/s44147022-00118-z. 11. Porwal R.K., Yadava V., Ramkumar J. Micro electrical discharge machining of micro-hole. Advanced Science Engineering and Medicine, 2020, vol. 12 (11), pp. 1335–1339. DOI: 10.1166/asem.2020.2586. 12. Su X., Wang G., Yu J., Jiang F., Li J., Rong Y. Predictive model of milling force for complex profile milling. The International Journal of Advanced Manufacturing Technology, 2016, vol. 87, pp. 1653–1662. DOI: 10.1007/ s00170-016-8589-1. 13. Gimadeev M.R., Nikitenko A.V., Berkun V.O. Influence of the sphero-cylindrical tool orientation angles on roughness under processing complex-profile surfaces. Advanced Engineering Research, 2023, vol. 23 (3), pp. 231– 240. DOI: 10.23947/2687-1653-2023-23-3-231-240. 14. Sharakhovsky L.I., Marotta A., Essiptchouk A.M. Model of workpiece erosion for electrical discharge machining process. Applied Surface Science, 2006, vol. 253, pp. 797–804. DOI: 10.1016/j.apsusc.2006.01.013. 15. Barenji R.V., Pourasl H.H., Khojastehnezhad V.M. Electrical discharge machining of the AISI D6 tool steel: prediction and modeling of the material removal rate and tool wear ratio. Precision Engineering, 2016, vol. 45, pp. 435–444. 16. Klocke F., Schneider S., Ehle L., Meyer H., Hensgen L., Klink A. Investigations on surface integrity of heat treated 42CrMo4 (AISI 4140) processed by sinking EDM. Procedia CIRP, 2016, vol. 42, pp. 580–585. DOI: 10.1016/j. procir.2016.02.263.

RkJQdWJsaXNoZXIy MTk0ODM1