Influence of the oscillating systems inclination angle on the surface properties of steel 45 during ultrasonic surface plastic deformation

OBRABOTKAMETALLOV technology Vol. 27 No. 1 2025 28. Kazantsev V.F., Luzhnov Yu.M., Nigmetzyanov R.I., Sundukov S.K., Fatyukhin D.S. Vybor i optimizatsiya rezhimov ul’trazvukovogo poverkhnostnogo deformirovaniya [Selection and optimization of ultrasonic surface deformation modes]. Vestnik Moskovskogo avtomobil’no-dorozhnogo gosudarstvennogo tekhnicheskogo universiteta (MADI) = Bulletin of the Moscow Automobile and Road Construction State Technical University (MADI), 2016, vol. 4 (47), pp. 26–32. 29. Britvin L.N., Germanova V.A., Karagodin V.I., Nigmetzyanov R.I., Fatyukhin D.S. Uprochnenie poverkhnostnogo sloya detalei mashin metodami khimiko-termicheskoi obrabotki i ul’trazvukovymi tekhnologiyami [Hardening of the surface layer of machine parts using chemical-thermal treatment methods and ultrasonic technologies]. Vestnik Moskovskogo avtomobil’no-dorozhnogo gosudarstvennogo tekhnicheskogo universiteta (MADI) = Bulletin of the Moscow Automobile and Road Construction State Technical University (MADI), 2017, vol. 1 (48), pp. 63–67. 30. Sundukov S.K., Nigmetzyanov R.I., Prikhodko V.M., Fatyukhin D.S. Sequential treatment of steel surfaces bynitridingandultrasonichardening. KeyEngineeringMaterials, 2022, vol. 910, pp. 484–489.DOI: 10.4028/p-vz1gn6. 31. Chudina O.V., Prikhod’ko V.M., Simonov D.S., Bringulis P. Hybrid technology for surface hardening of structural steel. RussianEngineeringResearch, 2022,Vol. 42 (11), pp. 1192–1194. DOI: 10.3103/s1068798x22110065. 32. Chudina O., Simonov D., Simonova T., Litovchenko A. Effective combined surface hardening processes of structural steels using ultrasound. E3S Web of Conferences, 2023, vol. 431, p. 06024. DOI: 10.1051/ e3sconf/202343106024. 33. Salmi M., Huuki J., Ituarte I.F. The ultrasonic burnishing of cobalt-chrome and stainless steel surface made by additive manufacturing. Progress in Additive Manufacturing, 2017, vol. 2, pp. 31–41. DOI: 10.1007/s40964-0170017-z. 34. Ojo S.A., Manigandan K., Morscher G.N., Gyekenyesi A.L. Enhancement of the microstructure and fatigue crack growth performance of additive manufactured titanium alloy parts by laser-assisted ultrasonic vibration processing. Journal of Materials Engineering and Performance, 2024, vol. 33, pp. 10345–10359. DOI: 10.1007/ s11665-024-09323-8. 35. Xu Q., Qiu Z., Jiang D., Cai G., Yang X., Liu J., Li G. Surface properties of additively manufactured 316L steel subjected to ultrasonic rolling. Journal of Materials Engineering and Performance, 2024, pp. 1–10. DOI: 10.1007/ s11665-024-09173-4. 36. Walker P., Malz S., Trudel E., Nosir S., ElSayed M.S.A., Kok L. Effects of ultrasonic impact treatment on the stress-controlled fatigue performance of additively manufactured DMLS Ti-6Al-4V alloy. Applied Sciences, 2019, vol. 9 (22), p. 4787. DOI: 10.3390/app9224787. 37. Fatyukhin D.S., Nigmetzyanov R.I., Prikhodko V.M., SukhovA.V., Sundukov S.K. Comprehensive estimation of changes in the microgeometry of steel 45 by ultrasonic plastic deformation with a free deforming element. Metals, 2023, vol. 13 (1), p. 114. DOI: 10.3390/met13010114. 38. Universal friction machine MTU-01. TU 32.99.53-001-78940767-2018. Operation manual. LLC Advanced Technologies Publ., 2023. 18 p. (In Russian). Conflicts of Interest The authors declare no conflict of interest.  2025 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1