Development of a device for studying and simulating the electrochemical grinding process

OBRABOTKAMETALLOV MATERIAL SCIENCE Том 23 № 3 2021 EQUIPMEN . INSTRUM TS Vol. 7 No. 1 2025 the cutting speed varying from 4.7 m/s to 6.05 m/s, the cutting depth from 0.04 mm to 0.06 mm, and the longitudinal feed rate from 230 mm/min to 250 mm/min. Therefore, the developed device is suitable for investigating the relationship between the quality indicators of the machined surface and the cutting modes. To further investigate machining accuracy, the system rigidity should be increased. 2. Studies of the electrochemical grinding process of 0.12C-18Cr-10Ni-Ti stainless steel parts with a diameter of 10 mm, conducted using the developed device with a diamond cylindrical head with a 3 mm working diameter under the specified cutting parameters, have enabled the construction of an empirical model that predicts surface roughness variation as a function of electrochemical grinding modes. 3. Theoretical calculations and practical experiments have confirmed that the developed device is applicable for studying and modeling the electrochemical grinding of conductive parts using abrasive heads on a metallic bond. References 1. Borisov M.A., Lobanov D.V., Yanyushkin A.S., Skeeba V.Yu. Investigation of the process of automatic control of current polarity reversal in the conditions of hybrid technology of electrochemical processing of corrosion-resistant steels. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2020, vol. 22, no. 1, pp. 6–15. DOI: 10.17212/1994-6309-2020-22.1-6-15. (In Russian). 2. Lobanov D.V., Arkhipov P.V., Yanyushkin A.S., Skeeba V.Yu. The research into the effect of conditions of combined electric powered diamond processing on cutting power. Key Engineering Materials, 2017, vol. 736, pp. 81–85. DOI: 10.4028/www.scientific.net/KEM.736.81. 3. Bratan S.M., Kharchenko A.O., Vladetskaya E.A., Kharchenko A.A. Analysis and synthesis of vibration isolation system of a grinding machine with account of the operational reliability of its elements. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2019, vol. 21, no. 1, pp. 35–49. DOI: 10.17212/1994-6309-2019-21.1-35-49. (In Russian). 4. Kharchenko A., Chasovitina A., Bratan S. Modeling of regularities of change in profile sizes and wear areas of abrasive wheel grains during grinding. Materials Today: Proceedings, 2021, vol. 38 (4), pp. 2088–2091. DOI: 10.1016/j.matpr.2020.10.154. 5. Nosenko S.V., Nosenko V.A., Kremenetskii L.L. The condition of machined surface of titanium alloy in dry grinding. International Conference on Industrial Engineering, ICIE 2017, Saint-Petersburg, 16–19 May 2017, pp. 115–120. DOI: 10.1016/j.proeng.2017.10.446. 6. Gusev V.V., Roshchupkin S.I., Moiseev D.A., Melnikova E.P. Analysis of grinding process with the use of field theory. IOPConference Series: Materials Science and Engineering, 2019, vol. 709 (2), p. 022001. DOI: 10.1088/1757899X/709/2/022001. 7. Rechenko D.S. The study of the process of difficult-to-machine materials cutting at the micro-level. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2019, vol. 21, no. 2, pp. 18–25. DOI: 10.17212/1994-6309-2019-21.2-18-25. (In Russian). 8. Rechenko D.S., Popov A.Y., Titov Y.V., Balova D.G., Gritsenko B.P. Ultra-high-speed sharpening and hardening the coating of carbide metal-cutting tools for finishing aircraft parts made of titanium alloys. Journal of Physics: Conference Series, 2019, vol. 1260 (6), p. 062020. DOI: 10.1088/1742-6596/1260/6/062020. 9. Kozlov A.M., Kozlov A.A. Shaping the surface topology of cylindrical components by means of an abrasive tool. Russian Engineering Research, 2009, vol. 29 (7), pp. 743–746. DOI: 10.3103/S1068798X09070223. 10. Soler Ya.I., Kazimirov Yu.D. Predicting the supporting area of microrelief in machine parts of variable rigidity during plane grinding. Journal of Machinery Manufacture and Reliability, 2006, vol. 35 (3), pp. 260–265. 11. Niu L., Jin Z., Zhou Z., Dong Z., Zhu X. Study on electrochemical effect in electrochemical grinding of tungsten alloy. ISAAT 2018 – 21st International Symposium on Advances in Abrasive Technology, Toronto, 14– 16 October 2018. 12. Bratan S.M., Sidorov D.E., Bogutskii V.B. [Synthesis of a Kalman-Bussy filter for assessing the state of a grinding operation]. Sovremennye napravleniya i perspektivy razvitiya tekhnologii obrabotki i oborudovaniya v mashinostroenii [Modern directions and prospects for the development of processing technologies and equipment in mechanical engineering]. Materials of the International Scientific and technical conference, Sevastopol, September 14–15, 2015, pp. 87–91. (In Russian). 13. Nosenko V.A., Belukhin R.A., Fetisov A.V., Morozova L.K. Ispytatel’nyi kompleks na baze pretsizionnogo profileshlifoval’nogo stanka s ChPU CHEVALIER modeli smart-B1224 III [Test complex based on a precision

RkJQdWJsaXNoZXIy MTk0ODM1