OBRABOTKAMETALLOV Vol. 23 No. 3 2021 MATERIAL SCIENCE EQUIPMENT. INSTRUMENTS 7 1 5 of modeling systems of equations is a fully achievable task. The research results showed that improving the accuracy of predicting the surface quality obtained during metal cutting is directly dependent on the accuracy of modeling the cutting tool wear curve. Some discrepancy in the results is generally acceptable, and in terms of implementing a digital twin system, as well as subsequently refining themodel parameters, it is possible to use intelligent recognition algorithms that can be tuned to the difference between the predicted and actual value of cutting tool wear. References 1. Suslov A.G. Kachestvo poverkhnostnogo sloya detalei mashin [The quality of the surface layer of machine parts]. Moscow, Mashinostroenie Publ., 2000, 320 p. ISBN 5-217-02976-5. 2. Gimadeev M.P., Li A.A. Analiz avtomatizirovannykh sistem opredeleniya parametrov sherokhovatosti poverkhnosti na osnove dinamicheskogo monitoringa [Analysis of automated surface roughness parameter support systems based on dynamic monitoring]. Advanced Engineering Research, 2022, no. 2 (22), pp. 116–129. DOI: 10.23947/2687-1653-2022-22-2-116-129. 3. Tugengol’d A.K., Luk’yanov E.A., Voloshin R.N., Bonilla V.F. Intellektual’naya sistema monitoringa i upravleniya tekhnicheskim sostoyaniem mekhatronnykh tekhnologicheskikh ob”ektov [Intelligent system for monitoring and controlling the technical condition of mechatronic process facilities]. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta = Vestnik of Don State Technical University, 2020, no. 2 (20), pp. 188–195. DOI: 10.23947/1992-5980-2020-20-2-188-195. 4. Zakovorotnyi V.L., Gvindjiliya V.E. Influence of speeds of forming movements on the properties of geometric topology of the part in longitudinal turning. Journal of Manufacturing Processes, 2024, no. 112, pp. 202–213. DOI: 10.1016/j.jmapro.2024.01.037. 5. Altintas Y., Kersting P., Biermann D., Budak E., Denkena B., Lazoglu I. Virtual process systems for part machining operations. CIRP Annals, 2014, no. 2 (63), pp. 585–605. DOI: 10.1016/j.cirp.2014.05.007. 6. Altintas Y. Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge, New York, Cambridge University Press, 2012. 366 p. 7. Altintaş Y., Budak E. Analytical prediction of stability lobes in milling. CIRP Annals, 1995, vol. 1 (44), pp. 357–362. DOI: 10.1016/S0007-8506(07)62342-7. 8. KabaldinY.G., Shatagin D.A. Artificial intelligence and cyberphysical machining systems in digital production. Russian Engineering Research, 2020, vol. 40 (4), pp. 292–296. DOI: 10.3103/S1068798X20040115. 9. Chigirinsky Yu.L., Ingemansson A.R. Tekhnologicheskie aspekty podgotovki tsifrovogo mashinostroitel’nogo proizvodstva [Engineering process aspects of digitalization of machine-building production]. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering, 2023, no. 9 (147), pp. 39–48. DOI: 10.30987/2223-4608-2023-39-48. 10. Zakovorotny V.L., Gvindjiliya V.E. Process control synergetics for metal-cutting machines. Journal of Vibroengineering, 2022, vol. 24 (1), pp. 177–189. DOI: 10.21595/jve.2021.22087. 11. Gong S., Li S., Zhang Y., Zhou L., Xia M. Digital twin-assisted intelligent fault diagnosis for bearings. Measurement Science and Technology, 2024, vol. 35 (10), p. 106128. DOI: 10.1088/1361-6501/ad5f4c. 12. Zhang Y., Ji J.C., Ren Z., Ni Q., Gu F., Feng K., Yu K., Ge J., Lei Z., Liu Z. Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing. Reliability Engineering & System Safety, 2023, vol. 234, p. 109186. DOI: 10.1016/j.ress.2023.109186. 13. Li T., Shi H., Bai X., Zhang K. A digital twin model of life-cycle rolling bearing with multiscale fault evolution combined with different scale local fault extension mechanism. IEEE Transactions on Instrumentation and Measurement, 2023, vol. 72, pp. 1–11. DOI: 10.1109/TIM.2023.3243663. 14. Li Z., Ding X., Song Z., Wang L., Qin B., Huang W. Digital twin-assisted dual transfer: a novel informationmodel adaptation method for rolling bearing fault diagnosis. Information Fusion, 2024, vol. 106, p. 102271. DOI: 10.1016/j.inffus.2024.102271. 15. Zakovorotny V.L., Gvindjiliya V.E. Sinergeticheskii podkhod k povysheniyu effektivnosti upravleniya processami obrabotki na metallorezhushchikh stankakh [Synergetic approach to improve the efficiency of machining process control on metal- cutting machines]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 3, pp. 84–99. DOI: 10.17212/1994-6309-2021-23.3-84-99. 16. Ryzhkin A.A. Sinergetika iznashivaniya instrumental’nykh rezhushchikh materialov (triboelektricheskii aspekt) [Synergetics of wear of tool cutting materials (triboelectric aspect)]. Rostov-on-Don, DSTU Publ., 2004. 323 p. ISBN 5-7890-0307-9.
RkJQdWJsaXNoZXIy MTk0ODM1