Fabrication and characterization of Al-7%Si alloy matrix nanocomposite by stir casting technique using multi-wall thickness steel mold

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 27 No. 1 2025 32. Liu G.L., Si N.C., Sun S.C., Wu Q.F. Effect of mould sand type and casting wall thickness on properties and microstructure of multivariate Al–7·5Si–4Cu alloy. Materials Research Innovations, 2013, vol. 17, suppl. 1, pp. 246–250. DOI: 10.1179/1432891713Z.000000000224. 33. Ragazin A.A., Aryshensky V.Yu., Konovalov S.V., Aryshenskii E.V., Bakhtegareev I. Study of the effect of hafnium and erbium content on the formation of microstructure in aluminium alloy 1590 cast into a copper chill mold. Metal Working and Material Science, 2024, vol. 26 (1), pp. 99–112. 34. Liu X., Zhao Q., Jiang Q. Effects of cooling rate and TiC nanoparticles on the microstructure and tensile properties of an AleCu cast alloy. Materials Science & Engineering: A, 2020, vol. 790, p. 139737. 35. Fan W., Bai Y., Zuo G., Hao H. The control of NbB2 particles in Al- NbB2 master alloy and its effect on grain refinement of AZ91 magnesium alloy. Materials Science & Engineering: A, 2022, vol. 854, p. 143808. 36. He C., Yu W., Li Y., Wang Z., Wu D., Xu G. Relationship between cooling rate, microstructure evolution, and performance improvement of an AleCu alloy prepared using different methods. Materials Research Express, 2020, vol. 7 (11), p. 116501. 37. Ravkov L., Diak B., Gallerneault M., Clark P., Marzano G. The role of cooling rate on microstructure in a sand-cast Al-Cu-Ag alloy containing high amounts of TiB2. Canadian Metallurgical Quarterly, 2021, vol. 60 (2), pp. 57–65. 38. Wang T.M., Chen Z.N., Fu H.W., Li T.J. Grain refining performance of Al-B master alloys with different microstructures on Al-7Si alloy. Metals and Materials International, 2013, vol. 19 (2), pp. 367–70. 39. Kong X., Wang Y., Fan H., Wu J., Xu H., Mao H. Effect of high cooling rate on the solidification microstructure of Al-Cu/TiB2 alloy fabricated by freeze-ablation casting. Journal of Materials Research and Technology, 2023, vol. 25, pp. 593–607. 40. Dewangan R., Sharma B.P., Sharma S.S. Investigation of hardness behavior in aluminum matrix composites reinforced with coconut shell ash and red mud using Taguchi analysis. Metal Working and Material Science, 2024, vol. 26 (3), pp. 179–191. 41. Reddy M.P., Ubaid F., Shakoor R.A., Parande G., Manakari V., Mohamed A.M.A., Gupta M. Effect of reinforcement concentration on the properties of hot extruded Al-Al2O3 composites synthesized through microwave sintering process. Materials Science & Engineering: A, 2017, vol. 696, pp. 60–69. 42. Malaki M., Xu W., Kasar A.K., Menezes P.L., Dieringa H., Varma R.S., Gupta M. Advanced metal matrix nanocomposites. Metals, 2019, vol. 9 (3), p. 330. 43. Kok M. Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. Journal of Materials Processing Technology, 2005, vol. 161 (3), pp. 381–387. 44. Mattli M.R., Matli P.R., KhanA., Abdelatty R.H., Yusuf M., Ashraf A.A., Kotalo R.G., Shakoor R.A. Study of microstructural and mechanical properties of Al/SiC/TiO2 hybrid nanocomposites developed by microwave sintering. Crystals, 2021, vol. 11, p. 1078. DOI: 10.3390/cryst11091078. 45. Golnaz N.A., Arvin T.T., Aghajani H. Investigation on corrosion behavior of Cu–TiO2 nanocomposite synthesized by the use of SHS method. Journal of Material Research and Technology, 2019, vol. 8 (2), pp. 2216–2222. 46. Walker J.C., Rainforth W.M., Jones H. Lubricated sliding wear behaviour of aluminium alloy composites. Wear, 2005, vol. 259, pp. 577–589. 47. Khandoori G., Mer K.K.S., Chandraveer Singh. Sliding behaviour of aluminium metal matrix composite reinforced with TiO2. International Journal of Resent Scientific Research, 2015, vol. 6 (5), pp. 4197–4203. 48. GatouM.-A., SyrrakouA., Lagopati N., Pavlatou E.A. PhotocatalyticTiO2-based nanostructures as a promising material for diverse environmental applications: a review. Reactions, 2024, vol. 5, pp. 135–194. DOI: 10.3390/ reactions5010007. 49. Antony Vasantha Kumar C., Selwin Rajadurai J. Influence of rutile (TiO2) content on wear and microhardness characteristics of aluminium-based hybrid composites synthesized by powder metallurgy. Transactions of Nonferrous Metals Society of China, 2016, vol. 26 (1), pp. 63–73. DOI: 10.1016/S1003-6326(16)64089-X. 50. Ahamad N., Mohammad A., Sadasivuni K.K., Gupta P. Wear, optimization and surface analysis of Al-Al2O3-TiO2 hybrid metal matrix composites. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, vol. 235 (1), pp. 93–102. DOI: 10.1177/1350650120970432. Conflicts of Interest The authors declare no conflict of interest.  2025 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1