Comparison of ultrasonic surface treatment methods applied to additively manufactured Ti-6Al-4V alloy

OBRABOTKAMETALLOV Vol. 27 No. 2 2025 technology 6. Tarasova T.V., Nazarov A.P., Prokof’ev M.V. Effect of the regimes of selective laser melting on the structure and physicomechanical properties of cobalt-base superalloys. The Physics of Metals and Metallography, 2015, vol. 116, pp. 601–605. DOI: 10.1134/S0031918X15060101. 7. Aleksandrov V.A., Fatyukhin D.S., Sundukov S.K., Filatova A.A. Ultrasonic methods for improving object surface quality prepared by corrosion-resistant steel powder selective laser melting. Metal Science and Heat Treatment, 2018, vol. 60, pp. 381–386. DOI: 10.1007/s11041-018-0287-1. 8. Konov S.G., Kotoban D.V., Sundukov S.K., Fatyukhin D.S. Perspektivy primeneniya ul’trazvukovykh tekhnologii v additivnom proizvodstve [Prospects for the application of ultrasonic technology in additive manufacturing]. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering, 2015, no. 9 (51), pp. 28–34. 9. Tang C., Tan J.L., Wong C.H. A numerical investigation on the physical mechanisms of single track defects in selective laser melting. International Journal of Heat and Mass Transfer, 2018, vol. 126, pt. B, pp. 957–968. DOI: 10.1016/j.ijheatmasstransfer.2018.06.073. 10. Zhang B., Li Y., Bai Q. Defect formation mechanisms in selective laser melting: a review. Chinese Journal of Mechanical Engineering, 2017, vol. 30, pp. 515–527. DOI: 10.1007/s10033-017-0121-5. 11. NasabM.H., Gastaldi D., LecisN.,VedaniM. Onmorphological surface features of the parts printed by selective laser melting (SLM). Additive Manufacturing, 2018, vol. 24, pp. 373–377. DOI: 10.1016/j.addma.2018.10.011. 12. Singla A.K., Banerjee M., Sharma A., Singh J., Bansal A., Gupta M.K., Khanna N., Shahi A.S., Goyal D.K. Selective laser melting of Ti6Al4V alloy: process parameters, defects and post-treatments. Journal of Manufacturing Processes, 2021, vol. 64, pp. 161–187. DOI: 10.1016/j.jmapro.2021.01.009. 13. Bai Y., Zhao C., Wang D., Wang H. Evolution mechanism of surface morphology and internal hole defect of 18Ni300 maraging steel fabricated by selective laser melting. Journal of Materials Processing Technology, 2022, vol. 299, p. 117328. DOI: 10.1016/j.jmatprotec.2021.117328. 14. Li C., Liu D., Liu G., Liu Sh., Jin X., Bai Y. Surface characteristics enhancement and morphology evolution of selective-laser-melting (SLM) fabricated stainless steel 316L by laser polishing. Optics & Laser Technology, 2023, vol. 162, p. 109246. DOI: 10.1016/j.optlastec.2023.109246. 15. Shi X., Yan C., Feng W., Zhang Y., Leng Z. Effect of high layer thickness on surface quality and defect behavior of Ti-6Al-4V fabricated by selective laser melting. Optics & Laser Technology, 2020, vol. 132, p. 106471. DOI: 10.1016/j.optlastec.2020.106471. 16. Giorleo L., Ceretti E., Giardini C. Ti surface laser polishing: effect of laser path and assist gas. Procedia CIRP, 2015, vol. 33, pp. 446–451. DOI: 10.1016/j.procir.2015.06.102. 17. Kumar A.Y., Bai Y., Eklund A., Williams C.B. The effects of Hot Isostatic Pressing on parts fabricated by binder jetting additive manufacturing. Additive Manufacturing, 2018, vol. 24, pp. 115–124. DOI: 10.1016/j. addma.2018.09.021. 18. Popov V., Katz-Demyanetz A., Garkun A., Muller G., Strokin E., Rosenson H. Effect of Hot Isostatic Pressure treatment on the Electron-Beam Melted Ti-6Al-4V specimens. Procedia Manufacturing, 2018, vol. 21, pp. 125–132. DOI: 10.1016/j.promfg.2018.02.102. 19. Łyczkowska E., Szymczyk P., Dybała B., Chlebus E. Chemical polishing of scaffolds made of Ti–6Al–7Nb alloy by additive manufacturing. Archives of Civil and Mechanical Engineering, 2014, vol. 14 (4), pp. 586–594. DOI: 10.1016/j.acme.2014.03.001. 20. Jain S., Corliss M., Tai B., Hung W.N. Electrochemical polishing of selective laser melted Inconel 718. Procedia Manufacturing, 2019, vol. 34, pp. 239–246. DOI: 10.1016/j.promfg.2019.06.145. 21. Slegers S., Linzas M., Drijkoningen J., D’Haen J., Reddy N.K., Deferme W. Surface roughness reduction of additive manufactured products by applying a functional coating using ultrasonic spray coating. Coatings, 2017, vol. 7 (12), p. 208. DOI: 10.3390/coatings7120208. 22. Hosseinzadeh A., Radi A., Richter J., Wegener T., Sajadifar S.V., Niendorf T., Yapici G.G. Severe plastic deformation as a processing tool for strengthening of additive manufactured alloys. Journal of Manufacturing Processes, 2021, vol. 68, pt. A, pp. 788–795. DOI: 10.1016/j.jmapro.2021.05.070. 23. Nigmetzyanov R.I., Sundukov S.K., Fatyukhin D.S., Grib V.V., Kartsov S.K. Additive manufacturing with ultrasound. Russian Engineering Research, 2017, vol. 37, pp. 1070–1073. DOI: 10.3103/S1068798X17120140. 24. Sundukov S.K. Ultrasonic vibration mechanism in making permanent joints. Steel in Translation, 2024, vol. 54, pp. 10–15. DOI: 10.3103/S0967091224700190. 25. Grigoriev S.N., Metel A.S., Tarasova T.V., Filatova A.A., Sundukov S.K., Volosova M.A., Okunkova A.A., Melnik Y.A., Podrabinnik P.A. Effect of cavitation erosion wear, vibration tumbling, and heat treatment on additively manufactured surface quality and properties. Metals, 2020, vol. 10 (11), p. 1540. DOI: 10.3390/met10111540.

RkJQdWJsaXNoZXIy MTk0ODM1