OBRABOTKAMETALLOV technology Vol. 27 No. 2 2025 26. Metel A.S., Grigoriev S.N., Tarasova T.V., Filatova A.A., Sundukov S.K., Volosova M.A., Okunkova A.A., Melnik Y.A., Podrabinnik P.A. Influence of postprocessing on wear resistance of aerospace steel parts produced by laser powder bed fusion. Technologies, 2020, vol. 8 (4), p. 73. DOI: 10.3390/technologies8040073. 27. Tan K.L., Yeo S.H. Surface modification of additive manufactured components by ultrasonic cavitation abrasive finishing. Wear, 2017, vol. 378–379, pp. 90–95. DOI: 10.1016/j.wear.2017.02.030. 28. Tan K.L., Yeo S.H. Surface finishing on IN625 additively manufactured surfaces by combined ultrasonic cavitation and abrasion. Additive Manufacturing, 2020, vol. 31, p. 100938. DOI: 10.1016/j.addma.2019.100938. 29. Wang J., Zhu J., Liew P.J. Material removal in ultrasonic abrasive polishing of additive manufactured components. Applied Sciences, 2019, vol. 9 (24), p. 5359. DOI: 10.3390/app9245359. 30. Tan W.X., Tan K.W., Tan K.L. Developing high intensity ultrasonic cleaning (HIUC) for post-processing additivelymanufacturedmetal components. Ultrasonics, 2022, vol. 126, p. 106829.DOI:10.1016/j.ultras.2022.106829. 31. Goh K.W.S., Tan K.L., Yeo S.H. Hybrid ultrasonic cavitation abrasive peening and electrochemical polishing on additively manufactured AlSi10Mg components. Proceedings of the 3rd International Conference on Advanced Surface Enhancement (INCASE) 2023. Singapore, Springer, 2023, pp. 59–66. DOI: 10.1007/978-981-99-8643-9_7. 32. Sun M., Toyserkani E. A novel hybrid ultrasound abrasive-driven electrochemical surface finishing technique for additively manufactured Ti6Al4V parts. Inventions, 2024, vol. 9 (2), p. 45. DOI: 10.3390/inventions9020045. 33. Wang B., Castellana J., Melkote S.N. A hybrid post-processing method for improving the surface quality of additively manufactured metal parts. CIRP Annals, 2021, vol. 70 (1), pp. 175–178. DOI: 10.1016/j.cirp.2021.03.010. 34. Jeon J.H., Panpalia N., Rashid A., Melkote S.N. Effect of electropolishing on ultrasonic cavitation in hybrid post-processing of additively manufactured metal surfaces. Journal of Manufacturing Processes, 2024, vol. 120, pp. 703–711. DOI: 10.1016/j.jmapro.2024.04.092. 35. Wang Q., Vohra M.S., Bai S., Yeo S.H. Rotary ultrasonic-assisted abrasive flow finishing and its fundamental performance in Al6061 machining. The International Journal of Advanced Manufacturing Technology, 2021, vol. 113, pp. 473–481. DOI: 10.1007/s00170-021-06666-7. 36. Nagalingam A.P., Yuvaraj H.K., Yeo S.H. Synergistic effects in hydrodynamic cavitation abrasive finishing for internal surface-finish enhancement of additive-manufactured components. Additive Manufacturing, 2020, vol. 33, p. 101110. DOI: 10.1016/j.addma.2020.101110. 37. Nagalingam A.P., Yeo S.H. Controlled hydrodynamic cavitation erosion with abrasive particles for internal surface modification of additive manufactured components. Wear, 2018, vol. 414–415, pp. 89–100. DOI: 10.1016/j. wear.2018.08.006. 38. Ma C., Andani M.T., Qin H., Moghaddam N.S., Ibrahim H., Jahadakbar A., Amerinatanzi A., Ren Z., Zhang H., Doll G.L., Dong Y., Elahinia M., Ye C. Improving surface finish and wear resistance of additive manufactured nickel-titanium by ultrasonic nano-crystal surface modification. Journal of Materials Processing Technology, 2017, vol. 249, pp. 433–440. DOI: 10.1016/j.jmatprotec.2017.06.038. 39. Lesyk D.A., Martinez S., Mordyuk B.N., Pedash O.O., Dzhemelinskyi V.V., Lamikiz А. Ultrasonic surface post-processing of hot isostatic pressed and heat treated superalloy parts manufactured by laser powder bed fusion. Additive Manufacturing Letters, 2022, vol. 3, p. 100063. DOI: 10.1016/j.addlet.2022.100063. 40. Ye Y., Zhang C., Gao L., Peng L., Liu G., Zhang Y., Tang C., Huang T., Ye C. Effect of electropulsing- assisted ultrasonic nanocrystal surface modification on microstructures and hardness of additive manufactured Inconel 718. Engineering Failure Analysis, 2023, vol. 153, p. 107611. DOI: 10.1016/j.engfailanal.2023.107611. 41. Xu Q., Qiu Z., Jiang D., Cai G., Yang X., Liu J., Li G. Surface properties of additively manufactured 316L steel subjected to ultrasonic rolling. Journal of Materials Engineering and Prformance, 2024, vol. 34 (2), pp. 1733– 1742. DOI: 10.1007/s11665-024-09173-4. 42. AmanovA., KarimbaevR.M. Effect of ultrasonic nanocrystal surfacemodification temperature:microstructural evolution, mechanical properties and tribological behavior of silicon carbide manufactured by additive manufacturing. Surface and Coatings Technology, 2021, vol. 425, p. 127688. DOI: 10.1016/j.surfcoat.2021.127688. 43. Walker P., Malz S., Trudel E., Nosir S., ElSayed M.S.A., Kok L. Effects of ultrasonic impact treatment on the stress-controlled fatigue performance of additively manufactured DMLS Ti-6Al-4V alloy. Applied Sciences, 2019, vol. 9 (22), p. 4787. DOI: 10.3390/app9224787. 44. Maleki E., Bagherifard S., Unal O., Jam A., Shao S., Guagliano M., Shamsaei N. Superior effects of hybrid laser shock peening and ultrasonic nanocrystalline surface modification on fatigue behavior of additive manufactured AlSi10Mg. Surface and Coatings Technology, 2023, vol. 463, p. 129512. DOI: 10.1016/j.surfcoat.2023.129512. 45. ZhaoW., LiuD., Chiang R., QinH., ZhangX.H., ZhangH., Liu J., Ren Z., Zhang R., Doll G.L., VasudevanV.K., Dong Y., Ye C. Effects of ultrasonic nanocrystal surface modification on the surface integrity, microstructure, and
RkJQdWJsaXNoZXIy MTk0ODM1