A comparative evaluation of friction and wear in alternative materials for brake friction composites

OBRABOTKAMETALLOV technology Vol. 27 No. 2 2025 References 1. Ahmed K.A., Mohideen S.R., Balaji M.A.S., Rajan B.S. Tribological performance of brass powder with different copper and zinc content in the brake pad. Tribology in Industry, 2020, vol. 42 (2), pp. 177–190. DOI: 10.24874/ti.783.10.19.03. 2. SellamiA., KchaouM., ElleuchR., CristolA.L., DesplanquesY. Study of the interaction betweenmicrostructure, mechanical and tribo-performance of a commercial brake lining material. Materials & Design, 2014, vol. 59, pp. 84– 93. DOI: 10.1016/j.matdes.2014.02.025. 3. Österle W., Dmitriev A.I. The role of solid lubricants for brake friction materials. Lubricants, 2016, vol. 4 (1), p. 5. DOI: 10.3390/lubricants4010005. 4. Liang Y., Wang W., Zhang Z., Xing H., Wang C., Zhang Z., Guan T., Gao D. Effect of material selection and surface texture on tribological properties of key friction pairs in water hydraulic axial piston pumps: a review. Lubricants, 2023, vol. 11 (8), p. 324. DOI: 10.3390/lubricants11080324. 5. Kumar M., Bijwe J. Studies on reduced scale tribometer to investigate the effects of metal additives on friction coefficient – temperature sensitivity in brake materials. Wear, 2010, vol. 269 (11–12), pp. 838–846. DOI: 10.1016/j. wear.2010.08.012. 6. Saffar A., Shojaei A., Arjmand M. Theoretical and experimental analysis of the thermal, fade and wear characteristics of rubber-based composite friction materials. Wear, 2010, vol. 269 (1–2), pp. 145–151. DOI: 10.1016/j. wear.2010.03.021. 7. Aranganathan N., Mahale V., Bijwe J. Effects of aramid fiber concentration on the friction and wear characteristics of non-asbestos organic friction composites using standardized braking tests. Wear, 2016, vol. 354, pp. 69–77. DOI: 10.1016/j.wear.2016.03.002. 8. McElheny D., Frydman V., Frydman L. Asolid-state 13C NMR analysis of molecular dynamics in aramid polymers. Solid State Nuclear Magnetic Resonance, 2006, vol. 29 (1–3), pp. 132–141. DOI: 10.1016/j.ssnmr.2005.08.010. 9. Prasad V.V., Talupula S. A review on reinforcement of basalt and aramid (Kevlar 129) fibers. Materials Today: Proceedings, 2018, vol. 5 (2), pp. 5993–5998. DOI: 10.1016/j.matpr.2017.12.202. 10. Xiao X., Yin Y., Bao J., Lu L., Feng X. Review on the friction and wear of brake materials. Advances in Mechanical Engineering, 2016, vol. 8 (5). DOI: 10.1177/1687814016647300. 11. Kumar M., Bijwe J. Composite friction materials based on metallic fillers: sensitivity of μ to operating variables. Tribology International, 2011, vol. 44 (2), pp. 106–113. DOI: 10.1016/j.triboint.2010.09.013. 12. Kumar M., Bijwe J. NAO friction materials with various metal powders: tribological evaluation on full-scale inertia dynamometer. Wear, 2010, vol. 269 (11–12), pp. 826–837. DOI: 10.1016/j.wear.2010.08.011. 13. Bachchhav B.D., Hendre K.N. Wear performance of asbestos-free brake pad materials. Jordan Journal of Mechanical & Industrial Engineering, 2022, vol. 16 (4), pp. 459–469. 14. Prabhu T.R. Effect of bimodal size particles reinforcement on the wear, friction and mechanical properties of brake composites. Tribology-Materials, Surfaces & Interfaces, 2016, vol. 10 (4), pp. 163–171. DOI: 10.1080/17515 831.2016.1262587. 15. Singh T., Patnaik A., Chauhan R., Bíró I., Jánosi E., Fekete G. Performance assessment of phenolic-based non-asbestos organic brake friction composite materials with different abrasives. Acta Polytechnica Hungarica, 2020, vol. 17 (5), pp. 49–67. DOI: 10.12700/APH.17.5.2020.5.3. 16. Matějka V., Leonardi M., Praus P., Straffelini G., Gialanella S. The role of graphitic carbon nitride in the formulation of copper-free friction composites designed for automotive brake pads. Metals, 2022, vol. 12 (1), p. 123. DOI: 10.3390/met12010123. 17. Park J., Gweon J., Seo H., Song W., Lee D., Choi J., Kim Y.C., Jang H. Effect of space fillers in brake friction composites on airborne particle emission: a case study with BaSO4, Ca(OH)2, and CaCO3. Tribology International, 2022, vol. 165, p. 107334. DOI: 10.1016/j.triboint.2021.107334. 18. Deshpande A.R., Kulkarni A.P., Wasatkar N., Gajalkar V., Abdullah M. Prediction of wear rate of glass-filled PTFE composites based on machine learning approaches. Polymers, 2024, vol. 16 (18), p. 2666. DOI: 10.3390/ polym16182666. 19. Dama Y., Jogi B., Pawade R., Kulkarni A. Vliyanie napravleniya pechati na kharakter iznosa PLAbiomateriala, poluchennogo metodom FDM: issledovanie dlya implantata tazobedrennogo sustava [Impact of print orientation on wear behavior in FDM printed PLA Biomaterial: Study for hip-joint implant]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2024, vol. 26, no. 4, pp. 19–40. DOI: 10.17212/1994-6309-2024-26.4-19-40.

RkJQdWJsaXNoZXIy MTk0ODM1