OBRABOTKAMETALLOV technology Vol. 27 No. 2 2025 14. Hisam M.W., Dar A.A., Elrasheed M.O., Khan M.S., Gera R., Azad I. The versatility of the Taguchi method: Optimizing experiments across diverse disciplines. Journal of Statistical Theory and Applications, 2024, vol. 23 (4), pp. 365–389. DOI: 10.1007/s44199-024-00093-9. 15. Keskin G., Salunkhe S., Küçüktürk G., Pul M., Gürün H., Baydaroğlu V. Optimization of PMEDM process parameters for B4C and B4C+SiC reinforcedAA7075 composites. Journal of Engineering Research, 2025, vol. 13 (1), pp. 47–56. DOI: 10.1016/j.jer.2023.09.012. 16. Zeng Y.P., Lin C.L., Dai H.M., Lin Y.C., Hung J.C. Multi-performance optimization in electrical discharge machining of Al2O3 ceramics using Taguchi baseAHPweighted TOPSIS method. Processes, 2021, vol. 9 (9), p. 1647. DOI: 10.3390/pr9091647. 17. Sahoo S.K., Thirupathi N., Saraswathamma K. Experimental investigation and multi-objective optimization of die sink EDM process parameters on Inconel-625 alloy by using utility function approach. Materials Today: Proceedings, 2020, vol. 24, pp. 995–1005. DOI: 10.1016/j.matpr.2020.04.412. 18. Patel Gowdru Chandrashekarappa M., Kumar S., Pimenov D.Y., Giasin K. Experimental analysis and optimization of EDM parameters on HcHcr steel in context with different electrodes and dielectric fluids using hybrid Taguchi-based PCA-utility and CRITIC-utility approaches. Metals, 2021, vol. 11 (3), p. 419. DOI: 10.3390/ met11030419. 19. Dutta S., Singh A.K., Paul B., Paswan M.K. Machining of shape-memory alloys using electrical discharge machiningwith an elaborate study of optimization approaches: a review. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, vol. 44 (11), p. 557. DOI: 10.1007/s40430-022-03826-y. 20. Singh R., Singh R.P., Trehan R. Machine learning algorithms based advanced optimization of EDM parameters: an experimental investigation into shape memory alloys. Sensors International, 2022, vol. 3, p. 100179. DOI: 10.1016/j.sintl.2022.100179. 21. Majumder H., Khan A., Naik D.K., Kumar C.S. Machinability assessment of shape memory alloy nitinol during WEDM operation: application potential of Taguchi based AHP–DFA technique. Surface Review and Letters, 2022, vol. 29 (01), p. 2250002. DOI: 10.1142/S0218625X22500020. 22. Gupta D.K., Dubey A.K. Multi process parameters optimization of Wire-EDM on shape memory alloy (Ni54.1Ti) using Taguchi approach. Materials Today: Proceedings, 2021, vol. 44, pp. 1423–1427. DOI: 10.1016/j. matpr.2020.11.628. 23. Gangele A., Mishra A. Surface roughness optimization during machining of NiTi shape memory alloy by EDM through Taguchi’s technique. Materials Today: Proceedings, 2020, vol. 29, pp. 343–347. DOI: 10.1016/j. matpr.2020.07.287. 24. Gaikwad V.S., Jatti V.S., Pawar P.J., Nandurkar K.N. Multi-objective optimization of electrical discharge machining process during machining of NiTi alloy using Taguchi and utility concept. Techno-Societal 2018: Proceedings of the 2nd International Conference on Advanced Technologies for Societal Applications. Springer International Publishing, 2020, vol. 2, pp. 479–489. DOI: 10.1007/978-3-030-16962-6_49. 25. Güven S., Yilmaz M., Gökkaya H., Nas E. Determination of the optimum conditions for machining NiTi shape memory alloys by electrical discharge machining. Journal of the Institution of Engineers (India): Series C, 2024, vol. 105 (5), pp. 1035–1046. DOI: 10.1007/s40032-024-01099-z. 26. Altas E., Gokkaya H., Karatas M.A., Ozkan D. Analysis of surface roughness and flank wear using the Taguchi method in milling of NiTi shape memory alloy with uncoated tools. Coatings, 2020, vol. 10 (12), p. 1259. DOI: 10.3390/coatings10121259. 27. Singh R., Singh R.P., Trehan R. State of the art in processing of shape memory alloys with electrical discharge machining: a review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, vol. 235 (3), pp. 333–366. DOI: 10.1177/0954405420958771. 28. Saoud F.B., Korkmaz M.E. A review on machinability of shape memory alloys through traditional and non-traditional machining processes: a review. İmalat Teknolojileri ve Uygulamaları, 2022, vol. 3 (1), pp. 14–32. DOI: 10.52795/mateca.1080941. 29. Al-Mousawi M.A., Al-Shafaie S.H., Khulief Z.T. Modeling and analysis of process parameters in EDM of Ni35Ti35Zr15Cu10Sn5 high-temperature high entropy shape memory alloy by RSM approach. Manufacturing Review, 2024, vol. 11, p. 4. DOI: 10.1051/mfreview/2024002. 30. Gaikwad V., Jatti V.S. Optimization of material removal rate during electrical discharge machining of cryo-treated NiTi alloys using Taguchi’s method. Journal of King Saud University – Engineering Sciences, 2018, vol. 30 (3), pp. 266–272. DOI: 10.1016/j.jksues.2016.04.003. 31. Sawant D.A., Jatti V.S., Mishra A., Sefene E.M., Jatti A.V. Surface roughness and surface crack length prediction using supervised machine learning-based approach of electrical discharge machining of deep cryogenically
RkJQdWJsaXNoZXIy MTk0ODM1