Experimental investigation of graphene oxide-based nano cutting fluid in drilling of aluminum matrix composite reinforced with SiC particles under nano-MQL conditions

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 MATERIAL SCIENCE EQUIPMENT. INSTRUMENTS 7 2 5 10. Thrust force is maximum at high speeds and minimum at low speeds; similarly, SiC volume fraction affects thrust force, with minimum thrust at low volume fractions. 11. Adhesion and abrasion marks with prominent ridge formation are clearly visible on SEM micrographs. 12. NMQL produces equal or lower thrust force compared to MQL due to the enhanced thermal conductivity and lubrication capability of graphene oxide nanoparticles mixed in Undi oil. 13. Nano cutting fluid with MQL techniques improves MQL performance, especially in drilling difficultto-cut materials. Addition of nanomaterials reduces friction at the tool-chip interaction surface, lowering cutting temperature. 14. These techniques are useful in automotive and aerospace applications for machining lightweight, difficult-to-cut materials such as aluminum-based metal matrix composites. References 1. Aamir M., Giasin K., Tolouei-Rad M., Vafadar A. A review: drilling performance and hole quality of aluminium alloys for aerospace applications. Journal of Materials Research and Technology, 2020, vol. 9, pp. 12484–12500. DOI: 10.1016/j.jmrt.2020.09.003. 2. Ali S.H.R. Roles and motivations for roundness instrumentation metrology. Journal of Control Engineering and Instrumentation, 2015, vol. 1 (1), pp. 11–28. 3. Amrita M., Srikant R.R., Sitaramaraju A. Performance evaluation of nanographite-based cutting fluid in machining process. Materials and Manufacturing Processes, 2014, vol. 29, pp. 600–605. DOI: 10.1080/10426914. 2014.893060. 4. Atabani A.E., César A.D.S. Calophyllum inophyllum L. – A prospective non-edible biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine performance. Renewable and Sustainable Energy Reviews, 2014, vol. 37, pp. 644–655. DOI: 10.1016/j.rser.2014.05.037. 5. BalandinA.A., Ghosh S., BaoW., Calizo I., Teweldebrhan D., Miao F., Lau C.N. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, vol. 8, pp. 902–907. DOI: 10.1021/nl0731872. 6. Chatha S.S., Pa A., Singh T. Performance evaluation of aluminium 6063 drilling under the influence of nanofluid minimum quantity lubrication. Journal of Cleaner Production, 2016, vol. 137, pp. 537–545. DOI: 10.1016/j. jclepro.2016.07.139. 7. Dhar N.R., Islam M.W., Islam S., Mithu M.A.H. The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel. Journal of Materials Processing Technology, 2006, vol. 171, pp. 93–99. DOI: 10.1016/j.jmatprotec.2005.06.047. 8. Duc T.M., Long T.T., Van Thanh D. Evaluation of minimum quantity lubrication and minimum quantity cooling lubrication performance in hard drilling of Hardox 500 steel using Al2O3 nanofluid. Advances in Mechanical Engineering, 2020, vol. 12. DOI: 10.1177/1687814019888404. 9. Fox N.J., Stachowiak G.W. Vegetable oil-based lubricants – a review of oxidation. Tribology International, 2007, vol. 40, pp. 1035–1046. DOI: 10.1016/j.triboint.2006.10.001. 10. Fratila D. Environmentally friendly manufacturing processes in the context of transition to sustainable production. Comprehensive Materials Processing, 2014, vol. 8, pp. 163–175. DOI: 10.1016/B978-0-08-0965321.00815-3. 11. Gaitonde V.N., Karnik S.R., Davim J.P. Minimising burr size in drilling: integrating response surface methodologywith particle swarmoptimization. Mechatronics andManufacturing Engineering.Woodhead Publishing, 2012, pp. 259–292. DOI: 10.1533/9780857095893.259. 12. Gaitonde V.N., Karnik S.R., Davim J.P. Some studies in metal matrix composites machining using response surface methodology. Journal of Reinforced Plastics and Composites, 2009, vol. 28, pp. 2445–2457. DOI: 10.1177/0731684408092375. 13. Jomaa W., Mechri O., Lévesque J., Songmene V., Bocher P., Gakwaya A. Finite element simulation and analysis of serrated chip formation during high-speed machining of AA7075–T651 alloy. Journal of Manufacturing Processes, 2017, vol. 26, pp. 446–458. DOI: 10.1016/j.jmapro.2017.02.015. 14. Kathirve M., Palanikumar K. Effect of volume fraction on surface roughness in turning of hybrid metal matrix (A6061 A1+SiC+Graphite) composites. Applied Mechanics and Materials, 2015, vol. 766–767, pp. 263–268. DOI: 10.4028/www.scientific.net/amm.766-767.263.

RkJQdWJsaXNoZXIy MTk0ODM1