OBRABOTKAMETALLOV Vol. 23 No. 3 2021 MATERIAL SCIENCE EQUIPMENT. INSTRUMENTS 7 2 5 References 1. SuslovA.G., Medvedev D.M., Petreshin D.I., Fedonin O.N. Sistema avtomatizirovannogo tekhnologicheskogo upravleniya iznosostoikost’yu detalei mashin pri obrabotke rezaniem [System for automated wear-resistance technological control of machinery at cutting]. Naukoemkie tekhnologii v mashinostroenii = Science intensive technologies in mechanical engineering, 2018, no. 5 (83), pp. 40–44. DOI: 10.30987/article_5ad8d291cdd cd8.06334386. 2. CaiY., Starly B., Cohen P., LeeY.S. Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing. Procedia Manufacturing, 2017, vol. 10, pp. 1031–1042. DOI: 10.1016/j. promfg.2017.07.094. 3. Zain A.M., Haron H., Sharif S. Prediction of surface roughness in the end milling machining using artificial neural network. Expert SystemswithApplications, 2010, vol. 37 (2), pp. 1755–1768. DOI: 10.1016/j.eswa.2009.07.033. 4. Cooper C., Wang P., Zhang J., Gao R.X., Roney T., Ragai I., Shaffer D. Convolutional neural network-based tool condition monitoring in vertical milling operations using acoustic signals. Procedia Manufacturing, 2020, vol. 49, pp. 105–111. DOI: 10.1016/j.promfg.2020.07.004. 5. Pimenov D.Y., Kumar Gupta M., da Silva L.R.R., Kiran M., Khanna N., Krolczyk G.M. Application of measurement systems in tool condition monitoring of milling: a review of measurement science approach. Measurement, 2022, vol. 199, p. 111503. DOI: 10.1016/j.measurement.2022.111503. 6. Guo M., Xia W., Wu C., Luo C., Lin Z. A surface quality prediction model considering the machine-toolmaterial interactions. The International Journal of Advanced Manufacturing Technology, 2024, vol. 131 (7–8), pp. 1–19. DOI: 10.1007/s00170-024-13072-2. 7. Chen C.H., Jeng S.Y., Lin C.J. Prediction and analysis of the Surface roughness in CNC end milling using neural networks. Application Science, 2022, vol. 12 (1), p. 393. DOI: 10.3390/app12010393. 8. Oktem H., Erzurumlu T., Erzincanli F. Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm. Materials & Design, 2006, vol. 27 (9), pp. 735–744. DOI: 10.1016/j. matdes.2005.01.010. 9. Bingham G., Miikkulainen R. Discovering parametric activation functions. Neural Networks, 2022, vol. 148, pp. 48–65. DOI: 10.1016/j.neunet.2022.01.001. 10. GalushkinA.I. Neironnye seti: osnovy teorii [Neural networks: fundamentals of theory]. Moscow, Goryachaya liniya – Telekom Publ., 2010. 496 p. ISBN 978-5-9912-0082-0. Available at: https://asu.tusur.ru/learning/010402/ d15a/010402-d15a-book1.pdf (accessed 02.04.2025). 11. AntsevA.V.,Yanov E.S., Dang Ch.Kh. Optimizatsiya rezhimov rezaniya s uchetomurovnya vibratsii na osnove primeneniya metodov iskusstvennogo intellekta [Cutting modes optimization taking into account vibration level based on application of artificial intelligence methods]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of Voronezh state technical university, 2020, vol. 16 (3), pp. 101–109. DOI: 10.25987/ VSTU.2020.16.3.014. 12. Erygin E.V., Duyun T.A. Prognozirovanie sherokhovatosti poverkhnosti pri chistovom frezerovanii s ispol’zovaniem neironnykh setei [Forecasting of the surface roughness in finishing milling using neural networks]. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova = Bulletin of Belgorod state technological university named after V.G. Shukhov, 2019, no. 10, pp. 135–141. DOI: 10.34031/article_5db3f6 c82c1ea9.69942788. 13. Lapshin V.P., Turkin I.A., Gvindzhilia V.I., Dudinov I.O., Gamaleev D.O. Nekotorye voprosy sovmestnogo primeneniya determinirovannykh matematicheskikh modelei i neironnykh setei v tsifrovykh dvoinikakh protsessa obrabotki metallov rezaniem na metallorezhushchikh stankakh [Using deterministic models and neural networks in digital twins of metal cutting processes]. STIN = Russian Engineering Research, 2024, no. 10, pp. 6–11. (In Russian). 14. Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014, vol. 15 (56), pp. 1929–1958. 15. Danish M., Gupta M.K., Irfan S.A., Ghazali S.M., Rathore M.F., Krolczyk G.M., AlsaadyA. Machine learning models for prediction and classification of tool wear in sustainable milling of additively manufactured 316 stainless steel. Results in Engineering, 2024, vol. 22, p. 102015. DOI: 10.1016/j.rineng.2024.102015. 16. Chai T., Draxler R.R. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 2014, vol. 7 (3), pp. 1247–1250. DOI: 10.5194/ gmd-7-1247-2014.
RkJQdWJsaXNoZXIy MTk0ODM1