Morphological changes of deformed structural steel surface in corrosive environment

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 27 No. 2 2025 – The highest statistically significant correlation (R² > 0.85) was found in the system “median depth of corrosion damage - magnitude of residual stresses”, where the standard deviation for the latter parameter does not exceed ±5 μm at a 95 % confidence interval. This relationship is determined by the crystallographic anisotropy of plastic deformation, manifested by the preferential activation of {111}⟨110⟩ slip systems in materials with a HCC lattice. Selective dislocation mobility along these crystallographic planes is associated with the formation of gradient fields of residual compressive stresses and localized relaxation processes occurring through the formation of dislocation substructures such as walls and cells. – The group method of data handling (GMDH) allows us to determine a complex parameter that reflects the median depth of corrosion damage of St3 structural steel in a 5 % hydrochloric acid solution. This parameter takes into account the magnitude of residual internal stresses, grain anisotropy, and their number. It exhibits a high degree of correlation with the median depth of corrosion damage. The obtained dependence is described by a second-order polynomial equation, with a coefficient of determination R² ≈ 0.99 and a scatter in the determination of the median depth of ± 1 μm. References 1. Li Y., Wang F.G., Liu G. Grain size effect on the electrochemical corrosion behavior of surface nanocrystallized low-carbon steel. Corrosion, 2004, vol. 60 (10), pp. 891–896. DOI: 10.5006/1.3287822. 2. Sokolov R.A., Novikov V.F., Muratov K.R., Venediktov A.N. Otsenka vliyaniya dispersnosti struktury stali na magnitnye i mekhanicheskie svoistva [Assessment of the effect of the steels structure dispersion on its magnetic and mechanical properties]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 4, pp. 93–110. DOI: 10.17212/1994-6309-2021-23.4-93-110. 3. PomazovaA.V., Panova T.V., Gering G.I. Rol’ faktorov formy zerennoi struktury v elektrokhimicheskoi korrozii kotel’nykh trub, izgotovlennykh iz uglerodistoi stali 20 [Role of grain structure form factors in electrochemical corrosion of boiler tubes made of carbon steel 20]. Praktika protivokorrozionnoi zashchity = Theory and Practice of Corrosion Protection, 2013, no. 3 (69), pp. 68–71. 4. Shur Ya.S., Zaikova V.A. O vliyanii napryazhenii na magnitnuyu strukturu kristallov kremnistogo zhelez [On the influence of stresses on the magnetic structure of siliceous iron crystals]. Fizika metallov i metallovedenie = Physics of Metals and Metallurgy, 1958, vol. 6, no. 3, pp. 545–555. (In Russian). 5. Smirnov M.A., Schastlivtsev V.M., Zhuravlev L.G. Osnovy termicheskoi obrabotki stali [Fundamentals of heat treatment of steel]. Yekaterinburg, Ural Branch of the Russian Academy of Sciences Publ., 1999. 495 p. 6. Ueji R., Tsuchida N., Terada D., Tsuji N., Tanaka Yu., Takemura A., Kunishige K. Tensile properties and twinning of high-manganese austenitic steel with fine-grained structure. Scripta Materialia, 2008, vol. 59 (9), pp. 963–966. DOI: 10.1016/j.scriptamat.2008.06.050. 7. Sokolov R.A., Novikov V.F., Kovenskij I.M., Muratov K.R., Venediktov A.N., Chaugarova L.Z. Vliyanie termicheskoi obrabotki na obrazovanie soedineniya MnS v nizkouglerodistoi konstruktsionnoi stali 09G2S [The effect of heat treatment on the formation of MnS compound in low-carbon structural steel 09Mn2Si]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24, no. 4, pp. 113–126. DOI: 10.17212/1994-6309-2022-24.4-113-126. 8. Sokolov R.A., Novikov V.F., Venediktov A.N., Muratov K.R. Influence of surface treatment of construction steels on determination of internal stresses and grain sizes using X-ray diffractometry method. Materials Today: Proceedings, 2019, vol. 19 (5), pp. 2584–2585. DOI: 10.1016/j.matpr.2019.09.015. 9. Introduction to Corrosion Monitoring. Metal Samples: Corrosion Monitoring Systems. Website. Available at: https://www.alspi.com/introduction.htm (accessed 25.03.2025). 10. Zhuk N.P. Kurs teorii korrozii i zashchity metallov [The rate of corrosion and protection of metals]. Moscow, Metallurgiya Publ., 1976. 472 p. 11. Tiwari A., Hihara L., Rawlins J., eds. Intelligent coatings for corrosion control. Butterworth-Heinemann, 2014. 746 p. ISBN 9780124114678. 12. Nalli K. Corrosion and its mitigation in the oil and gas industry. An overview. PetroMin Pipeliner Report, 2010, January – March, pp. 10–16. 13. Sokolov R.A., Novikov V.F., Muratov K.R., Venediktov A.N. Opredelenie vzaimosvyazi faktora raznozernistosti i skorosti korrozii konstruktsionnoi stali [Determination of the relationship between the factor of grain size factor and the corrosion rate of structural steel]. Obrabotka metallov (tekhnologiya, oborudovanie,

RkJQdWJsaXNoZXIy MTk0ODM1