Effect of heterogeneous structure on mechanical behavior of austenitic stainless steel subjected to novel thermomechanical processing

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 27 No. 2 2025 17. Wu X., Yang M., Yuan F., Wu G., Wei Y., Huang X., Zhu Y. Heterogeneous lamella structure unites ultrafinegrain strength with coarse-grain ductility. Proceedings of the National Academy of Sciences of the United States of America, 2015, vol. 112 (47), pp. 14501–14505. DOI: 10.1073/pnas.1517193112. 18. Chen A., Liu J., Wang H., Lu J., Wang Y.M. Gradient twinned 304 stainless steels for high strength and high ductility. Materials Science and Engineering: A, 2016, vol. 667, pp. 179–188. DOI: 10.1016/j.msea.2016.04.070. 19. Nayzabekov A., Lezhnev S., Maksimkin O., Tsai K., Panin E., Arbuz A. Microstructure and mechanical properties of austenitic stainless steel AISI-321 after radial shear rolling. Journal of Chemical Technology and Metallurgy, 2018, vol. 53 (3), pp. 606–611. 20. Panov D., Kudryavtsev E., Naumov S., Klimenko D., Chernichenko R., Mirontsov V., Stepanov N., Zherebtsov S., Salishchev G., Pertcev A. Gradient microstructure and texture formation in a metastable austenitic stainless steel during cold rotary swaging. Materials, 2023, vol. 16 (4), p. 1706. DOI: 10.3390/ma16041706. 21. Panov D., Chernichenko R., Kudryavtsev E., Klimenko D., Naumov S., Pertcev A. Effect of cold swaging on the bulk gradient structure formation and mechanical properties of a 316-type austenitic stainless steel. Materials, 2022, vol. 15 (7), p. 2468. DOI: 10.3390/ma15072468. 22. Chernichenko R.S., Panov D.O., Naumov S.V., Kudryavtsev E.A., Mirontsov V.V., Salishchev G.A., PertsevA.S. Evolution of the structure, texture, and mechanical properties of austenitic stainless steel during annealing after cold radial forging. Physics of Metals and Metallography, 2023, vol. 124 (6), pp. 607–615. DOI: 10.1134/ S0031918X23600537. 23. Yang M., Pan Y., Yuan F., Zhu Y., Wu X. Back stress strengthening and strain hardening in gradient structure. Materials Research Letters, 2016, vol. 4 (3), pp. 145–151. DOI: 10.1080/21663831.2016.1153004. 24. Beyerlein I.J., Tóth L.S. Texture evolution in equal-channel angular extrusion. Progress in Materials Science, 2009, vol. 54 (4), pp. 427–510. DOI: 10.1016/j.pmatsci.2009.01.001. 25. Suwas S., Ray R.K. Crystallographic texture of materials. London, Springer, 2014. 265 p. ISBN 978-1-44716313-8. DOI: 10.1007/978-1-4471-6314-5. 26. Fonda R.W., Knipling K.E. Texture development in friction stir welds. Science and Technology of Welding & Joining, 2011, vol. 16 (4), pp. 288–294. DOI: 10.1179/1362171811Y.0000000010. 27. Nesterenko V.F., Meyers M.A., LaSalvia J.C., Bondar M.P., Chen Y.J., Lukyanov Y.L. Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum. Materials Science and Engineering: A, 1997, vol. 229 (1–2), pp. 23–41. DOI: 10.1016/s0921-5093(96)10847-9. 28. Chen Y., Liu G.M., Li H.Y., Zhang X.M., Ding H. Microstructure, strain hardening behavior, segregation and corrosion resistance of an electron beam welded thick high-Mn TWIP steel plate. Journal of Materials Research and Technology, 2023, vol. 25, pp. 1105–1114. DOI: 10.1016/j.jmrt.2023.06.010. 29. Hall E.O. The deformation and ageing of mild steel: II Characteristics of the Lüders deformation. Proceedings of the Physical Society. Section B, 1951, vol. 64 (9), pp. 742–747. DOI: 10.1088/0370-1301/64/9/302. 30. Petch N.J. The ductile-brittle transition in the fracture of α-iron: I. Philosophical Magazine, 1958, vol. 3 (34), pp. 1089–1097. DOI: 10.1080/14786435808237038. 31. Abramova M.M., Enikeev N.A., Valiev R.Z., Etienne A., Radiguet B., Ivanisenko Y., Sauvage X. Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel. Materials Letters, 2014, vol. 136, pp. 349–352. DOI: 10.1016/j.matlet.2014.07.188. 32. Humphreys F.J., Hatherly M. Recrystallization and related annealing phenomena. Elsevier, 2012. 520 p. ISBN 0080418848. 33. Wu X., Jiang P., Chen L., Yuan F., ZhuY.T. Extraordinary strain hardening by gradient structure. Proceedings of the National Academy of Sciences of the United States of America, 2014, vol. 111 (20), pp. 7197–7201. DOI: 10.1073/ pnas.1324069111. 34. Gao H., Huang Y., NixW.D., Hutchinson J.W. Mechanism-based strain gradient plasticity – I. Theory. Journal of the Mechanics and Physics of Solids, 1999, vol. 47 (6), pp. 1239–1263. DOI: 10.1016/S0022-5096(98)00103-3. 35. Wilson D.V., Bate P.S. Influences of cell walls and grain boundaries on transient responses of an if steel to changes in strain path. Acta Metallurgica et Materialia, 1994, vol. 42 (4), pp. 1099–1111. DOI: 10.1016/09567151(94)90127-9. Conflicts of Interest The authors declare no conflict of interest.  2025 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1