Effect of cold radial forging on structure, texture and mechanical properties of lightweight austenitic steel

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 27 No. 2 2025 9. Kim C.W., Kwon S.I., Lee B.H., Moon J.O., Park S.J., Lee J.H., Hong H.U. Atomistic study of nano-sized κ-carbide formation and its interaction with dislocations in a cast Si added FeMnAlC lightweight steel. Materials Science and Engineering: A, 2016, vol. 673, pp. 108–113. DOI: 10.1016/j.msea.2016.07.029. 10. Li Z., Wang Y.C., Cheng X., Gao C., Li Z., Langdon T.G. Microstructure and mechanical properties of an Fe– Mn–Al–C lightweight steel after dynamic plastic deformation processing and subsequent aging. Materials Science and Engineering: A, 2022, vol. 833, p. 142566. DOI: 10.1016/j.msea.2021.142566. 11. Rahnama A., Kotadia H., Sridhar S. Effect of Ni alloying on the microstructural evolution and mechanical properties of two duplex light-weight steels during different annealing temperatures: experiment and phase-field simulation. Acta Materialia, 2017, vol. 132 (6), pp. 627–643. DOI: 10.1016/j.actamat.2017.03.043. 12. Xiang S., Liu X., Xu R., Yin F., Cheng G.J. Ultrahigh strength in lightweight steel via avalanche multiplication of intermetallic phases and dislocation. Acta Materialia, 2023, vol. 242, p. 118436. DOI: 10.1016/j. actamat.2022.118436. 13. Moon J., Park S.J., Lee C.H., Hong H.U., Lee B.H., Kim S.D. Influence of microstructure evolution on hot ductility behavior of austenitic Fe–Mn–Al–C lightweight steels during hot tensile deformation. Materials Science and Engineering: A, 2023, vol. 868, p. 144786. DOI: 10.1016/j.msea.2023.144786. 14. Mao Q., Liu Y., Zhao Y. A review on mechanical properties and microstructure of ultrafine grained metals and alloys processed by rotary swaging. Journal of Alloys and Compounds, 2022, vol. 896, p. 163122. DOI: 10.1016/j. jallcom.2021.163122. 15. Machácková A., Krátká L., Petrmichl R., Kuncická L., Kocich R. Affecting structure characteristics of rotary swaged tungsten heavy alloy via variable deformation temperature. Materials, 2019, vol. 12 (24), p. 4200. DOI: 10.3390/ma12244200. 16. Panov D., Chernichenko R., Kudryavtsev E., Klimenko D., Naumov S., Pertcev A. Effect of cold swaging on the bulk gradient structure formation and mechanical properties of a 316-type austenitic stainless steel. Materials, 2022, vol. 15 (7), p. 2468. DOI: 10.3390/ma15072468. 17. Panov D., Kudryavtsev E., Naumov S., Klimenko D., Chernichenko R., Mirontsov V., Stepanov N., Zherebtsov S., Salishchev G., Pertcev A. Gradient microstructure and texture formation in a metastable austenitic stainless steel during cold rotary swaging. Materials, 2023, vol. 16 (4), p. 1706. DOI: 10.3390/ma16041706. 18. Panov D.O., Kudryavtsev E.A., Chernichenko R.S., Naumov S.V., Klimenko D.N., Stepanov N.D., Zherebtsov S.V., Salishchev G.A., Sanin V.V., Pertsev A.S. Excellent strength-ductility combination of interstitial non-equiatomic middle-entropy alloy subjected to cold rotary swaging and post-deformation annealing. Materials Science and Engineering: A, 2024, vol. 898, p. 146121. DOI: 10.1016/j.msea.2024.146121. 19. Fonda R.W., Knipling K.E. Texture development in friction stir welds. Science and Technology of Welding & Joining, 2011, vol. 16 (4), pp. 288–294. DOI: 10.1179/1362171811Y.0000000010. 20. Suwas S., Ray R.K. Crystallographic texture of materials. London, Springer, 2014. 265 p. ISBN 978-1-44716313-8. DOI: 10.1007/978-1-4471-6314-5. Conflicts of Interest The authors declare no conflict of interest.  2025 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1