OBRABOTKAMETALLOV Vol. 27 No. 3 2025 49 TECHNOLOGY 21. Benafan O., Bigelow G.S., Garg A., Noebe R.D., Gaydosh D.J., Rogers R.B. Processing and scalability of NiTiHf high-temperature shape memory alloys. Shape Memory and Superelasticity, 2021, vol. 7, pp. 109–165. DOI: 10.1007/s40830-020-00306-x. 22. Stolyarov V.V., Andreev V.A., Karelin R.D., Ugurchiev U.Kh., Cherkasov V.V., Komarov V.S., Yusupov V.S. Deformability of TiNiHf shape memory alloy under rolling with pulsed current. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24, no. 3, pp. 66–75. DOI: 10.17212/1994-6309-2022-24.3-66-75. 23. Karelin R., Komarov V., Cherkasov V., Yusupov V., Prokoshkin S., Andreev V. Production mechanical and functional properties of long-length TiNiHf rods with high-temperature shape memory eff ect. Materials, 2023, vol. 16 (2), p. 615. DOI: 10.3390/ma16020615. 24. Keret-Klainer M., Padan R., Khoptiar Y., Kauff mann Y., Amouyal Y. Tailoring thermal and electrical conductivities of a Ni-Ti-Hf-based shape memory alloy by microstructure design. Journal of Materials Science, 2022, vol. 57, iss. 25, pp. 12107–12124. DOI: 10.1007/s10853-022-07383-6. Confl icts of Interest The authors declare no confl ict of interest. © 2025 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).
RkJQdWJsaXNoZXIy MTk0ODM1