Production of rods and sheets from TiNiHf alloy with high-temperature shape memory effect by longitudinal rolling and rotary forging methods

OBRABOTKAMETALLOV Vol. 27 No. 3 2025 technology 4. Khmelevskaya I., Komarov V., Kawalla R., Prokoshkin S., Korpala G. Features of Ti-Ni alloy structure formation under multi-axial quasi-continuous deformation and post-deformation annealing. Materials Today: Proceedings, 2017, vol. 4 (3), pp. 4830–4835. DOI: 10.1016/j.matpr.2017.04.079. 5. Karelin R., Komarov V., Khmelevskaya I., Cherkasov V., Andreev V., Yusupov V., Prokoshkin S. Effect of temperature-deformation regimes of equal channel angular pressing in core-shell mode on the structure and properties of near-equiatomic titanium nickelide shape memory alloy. Journal of Alloys and Compounds, 2024, vol. 1005, p. 176071. DOI: 10.1016/j.jallcom.2024.176071. 6. Komarov V., Karelin R., Khmelevskaya I., Yusupov V., Gunderov D. Effect of post-deformation annealing on structure and properties of nickel-enriched Ti-Ni shape memory alloy deformed in various initially deformationinduced structure states. Crystals, 2022, vol. 12 (4), p. 506. DOI: 10.3390/cryst12040506. 7. Karelin R., Komarov V., Khmelevskaya I., Andreev V., Yusupov V., Prokoshkin S. Structure and properties of TiNi shape memory alloy after low-temperature ECAP in shells. Materials Science and Engineering: A, 2023, vol. 872, p. 144960. DOI: 10.1016/j.msea.2023.144960. 8. Parida J., Mishra S.C. NiTi-based ternary alloys. Nickel-Titanium Smart Hybrid Materials. Elsevier, 2022, pp. 191–213. DOI: 10.1016/B978-0-323-91173-3.00020-1. 9. Parvizi S., Hashemi S.M., Moein S. NiTi shape memory alloys: properties. Nickel-titanium smart hybrid materials. Elsevier, 2022, pp. 399–426. DOI: 10.1016/B978-0-323-91173-3.00021-3. 10. Ahmad M. Effect of ternary element addition on properties of TiNi-based shape memory alloys for engineering and medical applications. Journal of Metastable and Nanocrystalline Materials, 2023, vol. 36, pp. 7–20. DOI: 10.1016/B978-0-323-91173-3.00021-3. 11. Sampath S., Nguyen T.A. NiTi-based ternary shape-memory alloys. Nickel-titanium smart hybrid materials. Elsevier, 2022, pp. 123–137. DOI: 10.1016/B978-0-323-91173-3.00006-7. 12. Tong Y., Shuitcev A., Zheng Y. Recent development of TiNi-based shape memory alloys with high cycle stability and high transformation temperature. Advanced Engineering Materials, 2020, vol. 22, p. 1900496. DOI: 10.1002/adem.201900496. 13. Karakoc O., Atli K.C., Evirgen A., Pons J., Santamarta R., Benafan O., Noebe R.D., Karaman I. Effects of training on the thermomechanical behavior of NiTiHf and NiTiZr high temperature shape memory alloys. Materials Science and Engineering: A, 2020, vol. 794, p. 139857. DOI: 10.1016/j.msea.2020.139857. 14. TagiltsevA.I., Panchenko E.Y., Timofeeva E.E., ChumlyakovY.I., Fatkullin I.D., Marchenko E.S., Karaman I. The effect of stress-induced martensite aging in tension and compression on B2-B19′ martensitic transformation in Ni50.3Ti32.2Hf17.5 high-temperature shape memory alloy. Smart Materials and Structures, 2021, vol. 30 (2), p. 025039. DOI: 10.1088/1361-665X/abdaa8. 15. Shuitcev A., Gunderov D.V., Sun B., Li L., Valiev R.Z., Tong Y.X. Nanostructured Ti29.7Ni50.3Hf20 high temperature shape memory alloy processed by high-pressure torsion. Journal of Materials Science & Technology, 2020, vol. 52, pp. 218–225. DOI: 10.1016/j.jmst.2020.01.065. 16. Akgul O., Tugrul H.O., Kockar B. Effect of the cooling rate on the thermal and thermomechanical behavior of NiTiHf high-temperature shape memory alloy. Journal of Materials Research, 2020, vol. 35, iss. 12, pp. 1572–1581. DOI: 10.1557/jmr.2020.139. 17. ShuitcevA., Vasin R.N., BalagurovA.M., Li L., Bobrikov I.A., Tong Y.X. Thermal expansion of martensite in Ti29.7Ni50.3Hf20 shape memory alloy. Intermetallics, 2020, vol. 125, p. 106889. DOI: 10.1016/j.intermet.2020.106889. 18. Catal A.A., Bedir E., Yilmaz R., Canadinc D. Design of a NiTiHf shape memory alloy with an austenite finish temperature beyond 400 °C utilizing artificial intelligence. Journal of Alloys and Compounds, 2022, vol. 904, p. 164135. DOI: 10.1016/j.jallcom.2022.164135. 19. Kim J.H., Park C.H., Kim S.W., Hong J.K., Oh C.X., JeonY.M., KimK.K., Yeom J.T. Effects of microstructure and deformation conditions on the hot formability of Ni-Ti-Hf shape memory alloys. Journal of Nanoscience and Nanotechnology, 2014, vol. 14, pp. 9548–9553. DOI: 10.1166/jnn.2014.10191. 20. Babacan N., Bilal M., Hayrettin C., Liu J., Benafan O., Karaman I. Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy. Acta Materialia, 2018, vol. 157, pp. 228–244. DOI: 10.1016/j.actamat.2018.07.009. 21. Benafan O., Bigelow G.S., Garg A., Noebe R.D., Gaydosh D.J., Rogers R.B. Processing and scalability of NiTiHf high-temperature shape memory alloys. Shape Memory and Superelasticity, 2021, vol. 7, pp. 109–165. DOI: 10.1007/s40830-020-00306-x. 22. Stolyarov V.V., Andreev V.A., Karelin R.D., Ugurchiev U.Kh., Cherkasov V.V., Komarov V.S., Yusupov V.S. Deformability of TiNiHf shape memory alloy under rolling with pulsed current. Obrabotka metallov

RkJQdWJsaXNoZXIy MTk0ODM1