Information properties of vibroacoustic emission in diagnostic systems for cutting tool wear

OBRABOTKAMETALLOV Vol. 27 No. 3 2025 65 EQUIPMENT. INSTRUMENTS гностики износа режущего инструмента на примере токарной обработки // Проблемы машиностроения и надежности машин. – 1995. – № 3. – С. 95–103. 24. Григорьев А.С. Инструментарий системы ЧПУ для диагностики и прогнозирования износа режущего инструмента в реальном времени при токарной обработке // Вестник МГТУ «Станкин». – 2012. – № 1 (18). – С. 39–43. 25. Заковоротный В.Л., Гвинджилия В.Е. Эволюция динамической системы резания, обусловленная необратимыми преобразованиями энергии в зоне обработки // СТИН. – 2018. – № 12. – С. 17–25. 26. Заковоротный В.Л., Гвинджилия В.Е. Связь самоорганизации динамической системы резания с изнашиванием инструмента // Известия вузов. Прикладная нелинейная динамика. – 2020. – Т. 28, № 1. – С. 46–61. – DOI: 10.18500/0869-6632-2020-281-46-61. 27. Заковоротный В.Л., Гвинджилия В.Е., Кислов К.В. Информационные свойства частотных характеристик динамической системы резания при диагностике износа инструментов // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 3. – С. 114–134. – DOI: 10.17212/19946309-2024-26.3-114-134. 28. A review of sensor system and application in milling process for tool condition monitoring / M. Rizal, J.A. Ghani, M.Z. Nuawi, C.H. Haron // Research Journal of Applied Sciences, Engineering and Technology. – 2014. – Vol. 7 (10). – P. 2083–2097. – DOI: 10.19026/ rjaset.7.502. 29. Teti R. Advanced IT methods of signal processing and decision making for zero defect manufacturing in machining // Procedia CIRP. – 2015. – Vol. 28. – P. 3–15. – DOI: 10.1016/j.procir.2015.04.003. 30. Bhuiyan M., Choudhury I., Nukman Y. An innovative approach to monitor the chip formation eff ect on tool state using acoustic emission in turning // International Journal of Machine Tools and Manufacture. – 2012. – Vol. 58. – P. 19–28. – DOI: 10.1016/j.ijmachtools.2012.02.001. 31. Rehorn A.G., Jiang J., Orban P.E. State-of-theart methods and results in tool condition monitoring: a review // International Journal of Advanced Manufacturing Technology. – 2005. – Vol. 26. – P. 693–710. – DOI: 10.1007/s00170-004-2038-2. 32. Jemielniak K., Arrazola P. Application of AE and cutting force signals in tool condition monitoring in micro-milling // CIRP Journal of Manufacturing Science and Technology. – 2008. – Vol. 1 (2). – P. 97–102. – DOI: 10.1016/j.cirpj.2008.09.007. 33. Zakovorotny V.L., Ladnik I.V., Dhande S.G. A method for characterization of machine-tools dynamic parameters for diagnostic purposes // Journal of Materials Processing Technology. – 1995. – Vol. 53 (3–4). – P. 588– 600. – DOI: 10.1016/0924-0136(94)01745-M. 34. Zakovorotny V.L., Gvindjiliya V.E. Selforganization and evolution in dynamic friction systems // Journal of Vibroengineering. – 2021. – Vol. 23 (6). – P. 1418–1432. – DOI: 10.21595/jve.2021.22033. 35. Precision manufacturing process monitoring with acoustic emission / D.E. Lee, I. Hwang, C.M.O. Valente, J.F.G. Oliveira, D.A. Dornfeld // International Journal of Machine Tools and Manufacture. – 2006. – Vol. 46 (2). – P. 176–188. – DOI: 10.1016/j.ijmachtools.2005.04.001. 36. Tool condition monitoring (TCM) – the status of research and industrial application / G. Byrne, D. Dornfeld, I. Inasaki, G. Ketteler, W. Konig, R. Teti // CIRP Annals. – 1995. – Vol. 44 (2). – P. 541–567. – DOI: 10.1016/S0007-8506(07)60503-4. 37. Dimla D.E. Sensor signals for tool-wear monitoring in metal cutting operations – a review of methods // International Journal of Machine Tools and Manufacture. – 2000. – Vol. 40 (8). – P. 1073–1098. – DOI: 10.1016/S0890-6955(99)00122-4. 38. Choi Y., Narayanaswami R., Chandra A. Tool wear monitoring in ramp cuts in end milling using the wavelet transform // International Journal of Advanced Manufacturing Technology. – 2004. – Vol. 23 (5–6). – P. 419–428. – DOI: 10.1007/s00170-003-1898-1. 39. Dolinšek S., Kopac J. Acoustic emission signals for tool wear identifi cation // Wear. – 1999. – Vol. 225–229 (1). – P. 295–303. – DOI: 10.1016/s00431648(98)00363-9. 40. Chiou R.Y., Liang S.Y. Analysis of acoustic emission in chatter vibration with tool wear eff ect in turning // International Journal of Machine Tools and Manufacture. – 2000. – Vol. 40 (7). – P. 927–941. – DOI: 10.1016/S0890-6955(99)00093-0. 41. Application of acoustic emission sensor to investigate the frequency of tool wear and plastic deformation in tool condition monitoring / M.S.H. Bhuiyan, I.A. Choudhury, M. Dahari, Y. Nukman, S.Z. Dawal // Measurement. – 2016. – Vol. 92. – P. 208– 217. – DOI: 10.1016/j.measurement.2016.06.006. 42. Siddhpura A., Paurobally R. A review of fl ank wear prediction methods for tool condition monitoring in a turning process // International Journal of Advanced Manufacturing Technology. – 2013. – Vol. 65. – P. 371– 393. – DOI: 10.1007/s00170-012-4177-1. 43. Tool wear monitoring using naive Bayes classifi ers / J. Karandikar, T. McLeay, S. Turner, T. Schmitz // International Journal of Advanced Manufacturing Technology. – 2014. – Vol. 77. – P. 1613– 1626. – DOI: 10.1007/s00170-014-6560-6. 44. Kene A.P., Choudhury S.K. Analytical modeling of tool health monitoring system using multiple sensor data fusion approach in hardmachining //Measurement. –

RkJQdWJsaXNoZXIy MTk0ODM1