Modal analysis of various grinding wheel types for the evaluation of their integral elastic parameters

OBRABOTKAMETALLOV MATERIAL SCIENCE Том 23 № 3 2021 EQUIPMEN . INSTRUM TS Vol. 7 No. 3 2025 Poisson’s ratio values (ν = 0.17 and ν = 0.2, respectively). This underscores the importance of accurately determining the integral elastic parameters of the tool to correctly model the sound pressure generated during the grinding process. Even a slight error in determining Poisson’s ratio can lead to discrepancies between the modeled wheel’s characteristics and its actual behavior. 4. Empirical regression dependencies of the integral elastic parameters of grinding wheels on abrasive grain size and hardness have been obtained with a high degree of reliability and accuracy. References 1. Ardashev D.V., Zhukov A.S. Issledovanie spektral’nogo sostava svobodnykh akusticheskikh kolebanii shlifoval’nykh krugov na keramicheskoi svyazke [Research of spectral composition of natural acoustic vibrations of ceramic-bonded grinding wheels]. Metalloobrabotka = Metalworking, 2023, no. 1 (133), pp. 3–20. DOI: 10.25960/ mo.2023.1.3. (In Russian). 2. Ardashev D.V., Zhukov A.S. Investigation of the relationship between the cutting ability of the tool and the acoustic signal parameters during profile grinding. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2022, vol. 24, no. 4, pp. 64–83. DOI: 10.17212/1994-6309-2022-24.4-64-83. (In Russian). 3. Li C., Song Z., Huang X., Zhao H., Jiang X., Mao X. Analysis of dynamic characteristics for machine tools based on dynamic stiffness sensitivity. Processes, 2021, vol. 9 (12), art. 2260, pp. 1–16. DOI: 10.3390/pr9122260. 4. Xiao H., Hu X., Luo S., Li W. Developing and testing the proto type structure for micro tool fabrication. Machines, 2022, vol. 10 (10), art. 938, pp. 1–21. DOI: 10.3390/machines10100938. 5. Lin C.-Y., Luh Y.-P., Lin W.-Z., Lin B.-C., Hung J.-P. Modeling the static and dynamic behaviors of a large heavy-duty lathe machine under rated loads. Computation, 2022, vol. 10 (12), art. 207, pp. 1–18. DOI: 10.3390/ computation10120207. 6. Chan T.-C., Chang C.-C., Ullah A., Lin H.-H. Study on kinematic structure performance and machining characteristics of 3-axis machining center. Applied Sciences, 2023, vol. 13 (8), art. 4742, pp. 1–29. DOI: 10.3390/ app13084742. 7. Behera R., Chan T.-C., Yang J.-S. Innovative structural optimization and dynamic performance enhancement of high-precision five-axis machine tools. Journal of Manufacturing and Materials Processing, 2024, vol. 8 (4), art. 181, pp. 1–25. DOI: 10.3390/jmmp8040181. 8. Vázquez C.R., Guajardo-Cuéllar A. Prediction of vertical vibrations of a CNC router type geometry. Applied Sciences, 2024, vol. 14 (2), art. 621, pp. 1–23. DOI: 10.3390/app14020621. 9. Chi Y., Dai W., Lu Z., Wang M., Zhao Y. Real-time estimation for cutting tool wear based on modal analysis of monitored signals. Applied Sciences, 2018, vol. 8 (5), art. 708, pp. 1–13. DOI: 10.3390/app8050708. 10. Nie W., Zheng M., Xu S., Liu Y., Yu H. Stability analysis and structure optimization of unequal-pitch end mills. Materials, 2021, vol. 14 (22), art. 7003, pp. 1–13. DOI: 10.3390/ma14227003. 11. Wang J., Qian J., Huang K., Shang Z., Yu J. Chatter and surface waviness analysis in Oerlikon face hobbing of spiral bevel gears. Aerospace, 2024, vol. 11 (7), art. 535, pp. 1–25. DOI: 10.3390/aerospace11070535. 12. Mladjenovic C., Monkova K., Zivkovic A., Knezev M., Marinkovic D., Ilic V. Experimental identification of milling process damping and its application in stability lobe diagrams. Machines, 2025, vol. 13 (2), art. 96, pp. 1–24. DOI: 10.3390/machines13020096. 13. Nowakowski L., Blasiak S., Skrzyniarz M., Rolek J. Experimental-analytical method for determining the dynamic coefficients of turning tools. Materials, 2025, vol. 18 (3), art. 563, pp. 1–15. DOI: 10.3390/ma18030563. 14. Ovchinnikov A.I. Materialy dlya abrazivnogo instrumenta. Obzor [Materials for an abrasive tool. Review]. Nauka i obrazovanie = Science and Education, 2013, no. 7, pp. 41–68, DOI: 10.7463/0713.0577449. (In Russian). 15. Abyzov A.M. Oksid alyuminiya i alyumooksidnaya keramika (Obzor). Ch. 1. Svoistva Al2O3 i promyshlennoe proizvodstvo dispersnogo Al2O3 [Aluminum oxide and alumina ceramics (Review). Part 1. Properties of Al2O3 and industrial production of dispersed Al2O3]. Novye ogneupory = New Refractories, 2019, no. 1, pp. 16–23. DOI: 10.17073/1683-4518-2019-1-16-23. 16. Zhang H., Jiao F., Niu Y., Li C., Zhang Z., Tong J. Design and experimental study of longitudinal-torsional composite ultrasonic internal grinding horn. Micromachines, 2023, vol. 14 (11), art. 2056, pp. 1–17. DOI: 10.3390/ mi14112056. 17. Li F., Chen Y., Zhu D. Revealing the sound transmission loss capacities of sandwich metamaterials with re-entrant negative Poisson’s ratio configuration. Materials, 2023, vol. 16 (17), art. 5928, pp. 2–21. DOI: 10.3390/ ma16175928.

RkJQdWJsaXNoZXIy MTk0ODM1