OBRABOTKAMETALLOV Vol. 23 No. 3 2021 MATERIAL SCIENCE EQUIPMENT. INSTRUMENTS 7 5 37. Kim S.Y., Kang B.H., Hyun J.M. Heat transfer from pulsating flow in a channel filled with porous media. International Journal of Heat and Mass Transfer, 1994, vol. 37 (14), pp. 2025–2033. DOI: 10.1016/00179310(94)90304-2. 38. Gül H. Experimental investigation of heat transfer in oscillating circular pipes: High frequencies and amplitudes. Scientific Research and Essays, 2013, vol. 8 (13), pp. 524–531. DOI: 10.5897/SRE12.721. 39. Dittus F., Boelter L. Heat transfer in automobile radiators of the tubular type. International Communications in Heat and Mass Transfer, 1985, vol. 12 (1), pp. 3–22. DOI: 10.1016/0735-1933(85)90003-X. 40. Winterton R.H.S. Technical notes: Where did the dittus and boelter equation come from? International Journal of Heat and Mass Transfer, 1998, vol. 41 (4–5), pp. 809–810. DOI: 10.1016/S0017-9310(97)00177-4. 41. McAdams W.H. Heat transmission. 3rd ed. New York, McGraw-Hill, 1954. ISBN 0070447993. ISBN 9780070447998. 42. Bagade P.M., Bhumkar Y.G., Sengupta T.K. An improved orthogonal grid generation method for solving flows past highly cambered aerofoils with and without roughness elements. Computers and Fluids, 2014, vol. 103, pp. 275–289. DOI: 10.1016/j.compfluid.2014.07.031. 43. Elshafei E.A.M., Safwat Mohamed M., Mansour H., Sakr M. Experimental study of heat transfer in pulsating turbulent flow in a pipe. International Journal of Heat and Fluid Flow, 2008, vol. 29 (4), pp. 1029–1038. DOI: 10.1016/j.ijheatfluidflow.2008.03.018. 44. Cebeci T., Bradshaw P. Physical and computational aspects of convective heat transfer. New York, Springer, 2012. DOI: 10.1007/978-1-4612-3918-5. 45. Kays W., Crawford M., Weigand B. Convective heat and mass transfer. McGraw-Hill, 2005. ISBN 0072468769. ISBN 978-0072468762. 46. Chung D., Hutchins N., Schultz M.P., Flack K.A. Predicting the drag of rough surfaces. Annual Review of Fluid Mechanics, 2021, vol. 53, pp. 439–471. DOI: 10.1146/annurev-fluid-062520-115127. 47. Alfarawi S., Abdel-Moneim S.A., Bodalal A. Experimental investigations of heat transfer enhancement from rectangular duct roughened by hybrid ribs. International Journal of Thermal Sciences, 2017, vol. 118, pp. 123–138. DOI: 10.1016/j.ijthermalsci.2017.04.017. 48. MacDonald M., Chan L., Chung D., Hutchins N., Ooi A. Turbulent flow over transitionally rough surfaces with varying roughness densities. Journal of Fluid Mechanics, 2016, vol. 804, pp. 130–161. DOI: 10.1017/ jfm.2016.459. 49. Everts M., Ayres S.R., Mulock Houwer F.A., Vanderwagen C.P., Kotze N.M., Meyer J.P. The influence of surface roughness on heat transfer in the transitional flow regime. Proceedings of the 15th International Heat Transfer Conference. Begellhouse, 2014. DOI: 10.1615/IHTC15.cnv.008338. 50. Meyer J., Olivier J. Transitional flow inside enhanced tubes for fully developed and developing flow with different types of inlet disturbances: Part I – Adiabatic pressure drops. International Journal of Heat and Mass Transfer, 2011, vol. 54 (7), pp. 1587–1597. DOI: 10.1016/j.ijheatmasstransfer.2010.11.027. 51. Meyer J., Olivier J. Transitional flow inside enhanced tubes for fully developed and developing flow with different types of inlet disturbances: Part II – Heat transfer. International Journal of Heat and Mass Transfer, 2011, vol. 54 (7), pp. 1598–1607. DOI: 10.1016/j.ijheatmasstransfer.2010.11.026. 52. García A., Solano J.P., Vicente P.G., Viedma A. The influence of artificial roughness shape on heat transfer enhancement: Corrugated tubes, dimpled tubes and wire coils. Applied Thermal Engineering, 2012, vol. 35, pp. 196– 201. DOI: 10.1016/j.applthermaleng.2011.10.030. 53. Mousa M.H., Miljkovic N., Nawaz K. Review of heat transfer enhancement techniques for single phase flows. Renewable and Sustainable Energy Reviews, 2021, vol. 137, p. 110566. DOI: 10.1016/j.rser.2020.110566. 54. Everts M., Meyer J.P. Heat transfer of developing and fully developed flow in smooth horizontal tubes in the transitional flow regime. International Journal of Heat and Mass Transfer, 2018, vol. 117, pp. 1331–1351. DOI: 10.1016/j.ijheatmasstransfer.2017.10.071. 55. Kobayashi S., Inokuma K., Murata A., Iwamoto K. Effects of flow pulsation and surface geometry on heat transfer performance in a channel with teardrop-shaped dimples measured by transient technique. ASME Journal of Heat and Mass Transfer, 2024, vol. 146, p. 072001. DOI: 10.1115/1.4065117. 56. Abdelfattah M., Aziz M.A., Maghrabie H.M. Numerical analysis of heat transfer and fluid flow structures of jet impingement on a flat plate with different shapes of roughness elements. Numerical Heat Transfer, Part A: Applications, 2024, pp. 1–26. DOI: 10.1080/10407782.2024.2379032. 57. Ansys Fluent Theory Guide. ANSYS, Inc., 2021.
RkJQdWJsaXNoZXIy MTk0ODM1