OBRABOTKAMETALLOV Vol. 27 No. 3 2025 120 EQUIPMENT. INSTRUMENTS of changes in the size of profi les of abrasive grains and platforms wear in the grinding process]. Vestnik sovremennykh tekhnologii = Journal of Modern Technologies, 2020, no. 1, pp 43–48. 3. Chen J., Cui C., Huang G., Huang H., Xu X. Characterization of grain geometrical features for monolayer brazed grinding wheels based on grain cross-sections. The International Journal of Advanced Manufacturing Technology, 2019, vol. 105, pp. 1425–1436. DOI: 10.1007/s00170-019-04354-1. 4. Schnabel’ M., Buhr A., Schmidtmeier D., Chatterdjee S., Dutton J. Sovremennye predstavleniya o plavlenykh i spechennykh ogneupornykh zapolnitelyakh [The modern concepts of the fused and sintered refractory aggregates]. Novye ogneupory = New Refractories, 2016, no. 3, pp. 107–114. DOI: 10.17073/1683-4518-2016-3-107-114. 5. Odarchenko I.B., Prusenko I.N. Rol’ ogneupornogo napolnitelya v protsessakh strukturoobrazovaniya sterzhnevykh smesei [The role of refractory fi ller in the processes of structural formation of core mixtures]. Lit’e i metallurgiya = Foundry Production and Metallurgy, 2017, no. 4, pp. 89–93. 6. Yoshihara N., Takahashi H., Mizuno M. Eff ect of the abrasive grain distribution on ground surface roughness. International Journal of Automation Technology, 2022, vol. 16 (1), pp. 38–42. DOI: 10.20965/ijat.2022.p0038. 7. Sazonov S.E., Emchenko E.A., Strelyanaya Yu.O. Issledovanie povysheniya eff ektivnosti protsessa shlifovaniya krugami iz klassifi tsirovannogo po forme abrazivnogo zerna [Study of increasing effi ciency of the circular grinding process from classifi ed by the form of abrasive grain]. Aktual’nye problemy v mashinostroenii = Actual Problems in Machine Building, 2020, vol. 7, no. 3–4, pp. 59–63. 8. Shatko D.B., Lyukshin V.S. Issledovanie rezhushchei sposobnosti edinichnykh abrazivnykh zeren v zavisimosti ot ikh formy i prostranstvennoi orientatsii [Investigation of cutting capacity of single abrasive grains depending on their shape and spatial orientation]. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of the Kuzbass State Technical University, 2023, no. 5, pp. 23–30. DOI: 10.26730/1999-4125-20235-23-30. 9. Korotkov A., Korotkov V. Grinding tools made of grains with controlled shape and orientation. MATEC Web of Conferences, 2018, vol. 224, p. 01071. DOI: 10.1051/matecconf/201822401071. 10. Garshin A.P., Fedotova S.M. Abrazivnye materialy i instrumenty. Tekhnologiya proizvodstva [Abrasive materials and tools. Manufacturing technology]. St. Petersburg, Polytechnic University Publ., 2008. 1009 p. ISBN 978-5-7422-1853-1. 11. Tamás L., Rácz Á. Comparison of particle size and shape distribution of corundum produced by industrial ball mill and material bed compression. Multidiszciplináris tudományok, 2021, vol. 11, pp. 59–67. DOI: 10.35925/j. multi.2021.5.6. 12. Li Z., Zhai H., Tan M. Particle shape characterization of brown corundum powders by SEM and image analysis. IET Conference Publications, 2006, pp. 1310–1313. DOI: 10.1049/cp:20060969. 13. Wang Y., Mei J., Zou Y., Zhang D., Cao X. Machine learning reveals the infl uences of grain morphology on grain crushing strength. Acta Geotechnica, 2021, vol. 16, pp. 3617–3630. DOI: 10.1007/s11440-021-01270-1. 14. Tang P., Dai B., Zhou Z., Ma W. Crushing mechanism analysis of sintered ore and study of particle size distribution pattern after crushing. Ironmaking & Steelmaking: Processes, Products and Applications, 2024, vol. 51, pp. 527–545. DOI: 10.1177/03019233241248987. 15. Ajaka O., Akinbinu V. Design, fabrication and performance analysis of a planetary roll mill for fi ne grinding. ARPN Journal of Engineering and Applied Sciences, 2011, vol. 6, pp. 75–90. 16. Cao J., Liu L., Han Y., Feng A. Comminution behavior and mineral liberation characteristics of low-grade hematite ore in high pressure grinding roll. Physicochemical Problems of Mineral Processing, 2019, vol. 55, pp. 575– 585. DOI: 10.5277/ppmp18169. 17. Lyukshin V.S., Shatko D.B. Sovershenstvovanie protsessa sortirovki abrazivov po forme [Improving the process of sorting abrasives by shape]. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of the Kuzbass State Technical University, 2022, no. 4 (152), pp. 13–22. DOI: 10.26730/1999-4125-20224-13-22. 18. Shatko D.B., Lyukshin V.S., Strelnikov P.A. Separation of abrasive materials according to the form. Materials Science Forum, 2018, vol. 927, pp. 35–42. DOI: 10.4028/www.scientifi c.net/MSF.927.35. 19. Vaisberg L.A., Ustinov I.D. Fenomenologiya vibratsionnoi klassifi katsii i usredneniya po krupnosti granulyarnykh materialov [Phenomenology for vibration-induced size segregation and mixing of granular materials]. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki = St. Petersburg Polytechnic University Journal of Engineering Science and Technology, 2019, vol. 25, no. 1, pp. 181–189. DOI: 10.18721/JEST.25118. 20. Baidakova N.V. O printsipakh upravleniya tekhnologicheskoi chast’yu klassifi katora tipa VDK na operatsiyakh spetsrasseva abrazivnykh materialov [Principles of the engineering management of the classifi er
RkJQdWJsaXNoZXIy MTk0ODM1