Investigation of the process of surface decarburization of steel 20 after cementation and heat treatment

OBRABOTKAMETALLOV Vol. 27 No. 3 2025 135 MATERIAL SCIENCE 4. Zhang C.L., Xie L.Y., Liu G.L., Chen L., Liu Y.Z., Li J. Surface decarburization behavior and its adverse eff ects of air-cooled forging steel C70S6 for fracture splitting connecting rod. Metals and Materials International, 2016, vol. 22 (5), pp. 836–841. DOI: 10.1007/s12540-016-5657-x. 5. Carroll R.I., Beynon J.H. Decarburisation and rolling contact fatigue of a rail steel. Wear, 2006, vol. 260 (4–5), pp. 523–537. DOI: 10.1016/j.wear.2005.03.005. 6. Ren C.X., Wang D.Q.Q., Wang Q., Guo Y.S., Zhang Z.J., Shao C.W., Yang H.J., Zhang Z.F. Enhanced bending fatigue resistance of a 50CrMnMoVNb spring steel with decarburized layer by surface spinning strengthening. International Journal of Fatigue, 2019, vol. 124, pp. 277–287. DOI: 10.1016/j.ijfatigue.2019.03.014. 7. Zhao X.J., Guo J., Wang H.Y., Wen Z.F., Liu Q.Y., Zhao G.T., Wang W.J. Eff ects of decarburization on the wear resistance and damage mechanisms of rail steels subject to contact fatigue. Wear, 2016, vol. 364–365, pp. 130– 143. DOI: 10.1016/j.wear.2016.07.013. 8. Li S., Feng H., Wang S., Gao J., Zhao H., Wu H., Xu S., Feng Q., Li H., Liu X., Wu G. Phase transformation behaviors of medium carbon steels produced by twin roll casting and compact strip production processes. Materials, 2023, vol. 16 (5), p. 1980. DOI: 10.3390/ma16051980. 9. Xiao Z., Huang Y., Liu H., Wang S. Hot tensile and fracture behavior of 35CrMo steel at elevated temperature and strain rate. Metals, 2016, vol. 6 (9), p. 210. DOI: 10.3390/met6090210. 10. Wang X., Lianqi W., Zhou X., Zhang X., Shufeng Y., Chen Y. Protective bauxite-based coatings and their antidecarburization performance in spring steel at high temperatures. Journal of Materials Engineering and Performance, 2013, vol. 22, pp. 753–758. DOI: 10.1007/s11665-012-0309-x. 11. ChenY.R., Zhang F., LiuY. Decarburization of 60Si2MnAin 20 Pct H2O-N2 at 700 °C to 900 °C. Metallurgical and Materials Transactions A, 2020, vol. 51, pp. 1808–1821. 12. Chen Y.R., Zhang F. New development in decarburization research and its application to spring steels. High Temperature Corrosion of Mater, 2023, vol. 100, pp. 109–143. DOI: 10.1007/s11085-023-10181-3. 13. Gildersleeve M.J. Relationship between decarburisation and fatigue strength of through hardened and carburising steels. Materials Science and Technology, 1991, vol. 7 (4), pp. 307–310. 14. GOST R 54566–2011. Standartnye metody ispytanii dlya otsenki glubiny obezuglerozhennogo sloya [State Standard R 54566–2011. Steel. Standard test methods for estimating the depth of decarburized layer]. Moscow, Standartinform Publ., 2014. 15 p. 15. Zorc M., Nagode A., Burja J., Kosec B., Zorc B. Surface decarburization of the hypo-eutectoid carbon steel C45 during annealing in steady air at temperatures T > AC1. Metals, 2018, vol. 8, p. 425. DOI: 10.3390/met8060425. 16. Stepankin I.N., Pozdnyakov E.P. K voprosu izgotovleniya melkorazmernogo shtampovogo instrumenta iz ekonomno legirovannykh stalei s diff uzionnym uprochneniem poverkhnostnogo sloya [To the issue of manufacturing of small-size stamping tools from economically alloyed steels with diff usion hardening of the surface layer]. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem = Forging and Stamping Production. Material Working by Pressure, 2015, no. 9, pp. 25–32. 17. Çalik A. Eff ect of cooling rate on hardness and microstructure of AISI 1020, AISI 1040 and AISI 1060 Steels. International Journal of Physical Sciences, 2009, vol. 4 (9), pp. 514–518. 18. Ramesh B., Vempati S.R., Manjunath C., Elsheikh A.H. Examination of minimum quantity lubrication performance in the hard turning of AISI/SAE 1060 high-carbon steel. Journal of Materials Engineering and Performance, 2024, vol. 34 (13), pp. 136861–13696. DOI: 10.1007/s11665-024-10070-z. 19. Dewangan S., Mainwal N., Khandelwal M., Jadhav P.S. Performance analysis of heat treated AISI 1020 steel samples on the basis of various destructive mechanical testing and microstructural behavior. Australian Journal of Mechanical Engineering, 2022, vol. 20 (1), pp. 74–87. DOI: 10.1080/14484846.2019.1664212. 20. Chen R.Y., Yeun W.Y.D. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen. Oxidation of Metals, 2003, vol. 59 (5), pp. 433–468. 21. Voort G.F.V. Understanding and measuring decarburization. AM&P Technical Articles, 2015, vol. 173 (2), pp. 22–27. 22. Konstantinova M.V., Balanovskiy A.E., Gozbenko V.E., Kargapoltsev S.K., Karlina A.I., Shtayger M.G., Guseva E.A., Kuznetsov B.O. Application of plasma surface quenching to reduce rail side wear. IOP Conference Series: Materials Science and Engineering, 2019, vol. 560 (1), p. 012146. DOI: 10.1088/1757-899X/560/1/012146. 23. Yelemessov K., Baskanbayeva D., Martyushev N.V., Skeeba V.Y., Gozbenko V.E., Karlina A.I. Change in the properties of rail steels during operation and reutilization of rails. Metals, 2023, vol. 13, p. 1043. DOI: 10.3390/ met13061043.

RkJQdWJsaXNoZXIy MTk0ODM1