Investigation of the process of surface decarburization of steel 20 after cementation and heat treatment

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 27 No. 3 2025 Conclusion 1. Oxidation, maximum visible surface decarburization, and the completely decarburized ferrite layer increase with increasing heating period during quenching in a furnace with an air atmosphere, following the parabolic growth law. It is shown that with increasing heating temperature for quenching, the depth of the decarburized layer increases exponentially. The decarburization temperature plays a more important role in the decarburization rate compared to other influencing factors, since decarburization is a thermally activated process and exhibits high temperature sensitivity. 2. It was found that heating to a quenching temperature of T = 850–870 °C for t = 1 hour, under oxidizing furnace conditions, leads to decarburization of the surface layer to a depth of 5–10 μm. 3. It was found that heating to a quenching temperature of T = 1,100 °C in the oxidizing atmosphere of the furnace, with holding times ranging from 0.5 hours to 2 hours at an ambient temperature of Ta, results in the formation of a ferrite layer with a thickness of 50‑100 μm. References 1. Lakhtin Yu.M. Metallovedenie i termicheskaya obrabotka metallov [Metallology and heat treatment of metals]. Moscow, Metallurgiya Publ., 1983. 359 p. 2. Lakhtin Yu.M., Arzamasov B.N. Khimiko-termicheskaya obrabotka metallov [Chemical and thermal treatment of metals]. Moscow, Metallurgiya Publ., 1985. 256 p. 3. Choi S., Zwaag S.V.D. Prediction of decarburized ferrite depth of hypoeutectoid steel with simultaneous oxidation. ISIJ International, 2012, vol. 52 (4), pp. 549–558. DOI: 10.2355/isijinternational.52.549. 4. Zhang C.L., Xie L.Y., Liu G.L., Chen L., Liu Y.Z., Li J. Surface decarburization behavior and its adverse effects of air-cooled forging steel C70S6 for fracture splitting connecting rod. Metals and Materials International, 2016, vol. 22 (5), pp. 836–841. DOI: 10.1007/s12540-016-5657-x. 5. Carroll R.I., Beynon J.H. Decarburisation and rolling contact fatigue of a rail steel. Wear, 2006, vol. 260 (4–5), pp. 523–537. DOI: 10.1016/j.wear.2005.03.005. 6. Ren C.X., Wang D.Q.Q., Wang Q., Guo Y.S., Zhang Z.J., Shao C.W., Yang H.J., Zhang Z.F. Enhanced bending fatigue resistance of a 50CrMnMoVNb spring steel with decarburized layer by surface spinning strengthening. International Journal of Fatigue, 2019, vol. 124, pp. 277–287. DOI: 10.1016/j.ijfatigue.2019.03.014. 7. Zhao X.J., Guo J., Wang H.Y., Wen Z.F., Liu Q.Y., Zhao G.T., Wang W.J. Effects of decarburization on the wear resistance and damage mechanisms of rail steels subject to contact fatigue. Wear, 2016, vol. 364–365, pp. 130– 143. DOI: 10.1016/j.wear.2016.07.013. 8. Li S., Feng H., Wang S., Gao J., Zhao H., Wu H., Xu S., Feng Q., Li H., Liu X., Wu G. Phase transformation behaviors of medium carbon steels produced by twin roll casting and compact strip production processes. Materials, 2023, vol. 16 (5), p. 1980. DOI: 10.3390/ma16051980. 9. Xiao Z., Huang Y., Liu H., Wang S. Hot tensile and fracture behavior of 35CrMo steel at elevated temperature and strain rate. Metals, 2016, vol. 6 (9), p. 210. DOI: 10.3390/met6090210. 10. Wang X., Lianqi W., Zhou X., Zhang X., Shufeng Y., Chen Y. Protective bauxite-based coatings and their antidecarburization performance in spring steel at high temperatures. Journal of Materials Engineering and Performance, 2013, vol. 22, pp. 753–758. DOI: 10.1007/s11665-012-0309-x. 11. ChenY.R., Zhang F., LiuY. Decarburization of 60Si2MnAin 20 Pct H2O-N2 at 700 °C to 900 °C. Metallurgical and Materials Transactions A, 2020, vol. 51, pp. 1808–1821. 12. Chen Y.R., Zhang F. New development in decarburization research and its application to spring steels. High Temperature Corrosion of Mater, 2023, vol. 100, pp. 109–143. DOI: 10.1007/s11085-023-10181-3. 13. Gildersleeve M.J. Relationship between decarburisation and fatigue strength of through hardened and carburising steels. Materials Science and Technology, 1991, vol. 7 (4), pp. 307–310. 14. GOST R 54566–2011. Standartnye metody ispytanii dlya otsenki glubiny obezuglerozhennogo sloya [State Standard R 54566–2011. Steel. Standard test methods for estimating the depth of decarburized layer]. Moscow, Standartinform Publ., 2014. 15 p. 15. Zorc M., Nagode A., Burja J., Kosec B., Zorc B. Surface decarburization of the hypo-eutectoid carbon steel C45 during annealing in steady air at temperatures T > AC1. Metals, 2018, vol. 8, p. 425. DOI: 10.3390/met8060425. 16. Stepankin I.N., Pozdnyakov E.P. K voprosu izgotovleniya melkorazmernogo shtampovogo instrumenta iz ekonomno legirovannykh stalei s diffuzionnym uprochneniem poverkhnostnogo sloya [To the issue of manufacturing of small-size stamping tools from economically alloyed steels with diffusion hardening of the surface layer].

RkJQdWJsaXNoZXIy MTk0ODM1