Effect of heat treatment on the structure and properties of high-entropy alloy AlCoCrFeNiNb0.25

OBRABOTKAMETALLOV Vol. 27 No. 3 2025 149 MATERIAL SCIENCE 6. Shang Y., Brechtl J., Pistidda C., Liaw P.K. Mechanical behavior of high-entropy alloys: A review. HighEntropy Materials: Theory, Experiments, and Applications. Springer, 2021, pp. 435–522. DOI: 10.1007/978-3-03077641-1_10. 7. Sheng H.F., Gong M., Peng L.M. Microstructural characterization and mechanical properties of an Al0.5CoCrFeCuNi high-entropy alloy in as-cast and heat-treated/quenched conditions. Materials Science and Engineering: A, 2013, vol. 567, pp. 14–20. DOI: 10.1016/j.msea.2013.01.006. 8. Sui Q., Wang Z., Wang J., Xu S., Liu B., Yuan Q., Zhao F., Gong L., Liu J. Additive manufacturing of CoCrFeNiMo eutectic high entropy alloy: Microstructure and mechanical properties. Journal of Alloys and Compounds, 2022, vol. 913, p. 165239. DOI: 10.1016/j.jallcom.2022.165239. 9. RuktuevA.A., Lazurenko D.V., Ogneva T.S., Kuzmin R.I., Golkovski M.G., Bataev I.A. Structure and oxidation behavior of CoCrFeNiX (where X is Al, Cu, or Mn) coatings obtained by electron beam cladding in air atmosphere. Surface and Coatings Technology, 2022, vol. 448, p. 128921. DOI: 10.1016/j.surfcoat.2022.128921. 10. Laplanche G., Kostka A., Horst O.M., Eggeler G., George E.P. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Materialia, 2016, vol. 118, pp. 152–163. DOI: 10.1016/j. actamat.2016.07.038. 11. Wang W.R., Wang W.L., Wang S.C., Tsai Y.C., Lai C.H., Yeh J.W. Eff ects of Al addition on the microstructure andmechanical property ofAlxCoCrFeNi high-entropy alloys. Intermetallics, 2012, vol. 26, pp. 44–51. DOI: 10.1016/j. intermet.2012.03.005. 12. Arun S., Radhika N., Saleh B. Eff ect of additional alloying elements on microstructure and properties of AlCoCrFeNi high entropy alloy system: A comprehensive review. Metals and Materials International, 2025, vol. 31 (2), pp. 285–324. DOI: 10.1007/s12540-024-01752-3. 13. Zhang S., Wu C.L., Zhang C.H., Guan M., Tan J.Z. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance. Optics & Laser Technology, 2016, vol. 84, pp. 23–31. DOI: 10.1016/j.optlastec.2016.04.011. 14. Manzoni A., Daoud H., Völkl R., Glatzel U., Wanderka N. Phase separation in equiatomic AlCoCrFeNi highentropy alloy. Ultramicroscopy, 2013, vol. 132, pp. 212–215. DOI: 10.1016/j.ultramic.2012.12.015. 15. Wang Y.P., Li B.S., Ren M.X., Yang C., Fu H.Z. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Materials Science and Engineering: A, 2008, vol. 491 (1–2), pp. 154–158. DOI: 10.1016/j. msea.2008.01.064. 16. Kunce I., Polanski M., Karczewski K., Plocinski T., Kurzydlowski K.J. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping. Journal of Alloys and Compounds, 2015, vol. 648, pp. 751–758. DOI: 10.1016/j.jallcom.2015.05.144. 17. Zhang C., Zhang F., Diao H., Gao M.C., Tang Z., Poplawsky J.D., Liaw P.K. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys. Materials & Design, 2016, vol. 109, pp. 425–433. DOI: 10.1016/j. matdes.2016.07.073. 18. Osintsev K.A., Gromov V.E., Konovalov S.V., Panchenko I.A., Vashchuk E.S. Structural-phase state of highentropy Al-Co-Cr-Fe-Ni alloy obtained by wire-arc additive technology. Polzunovskiy vestnik, 2016, no. 1, pp. 141– 146. DOI: 10.25712/ASTU.2072-8921.2021.01.020. (In Russian). 19. Zemanate A.M., Júnior A.M.J., Andreani G.F. de Lima, Roche V., Cardoso K.R. Corrosion behavior of AlCoCrFeNix high entropy alloys. Electrochimica Acta, 2023, vol. 441, p. 141844. DOI: 10.1016/j. electacta.2023.141844. 20. Niu S., Kou H., Guo T., Zhang Y., Wang J., Li J. Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy. Materials Science and Engineering: A, 2016, vol. 671, pp. 82–86. DOI: 10.1016/j. msea.2016.06.040. 21. Ivanov I.V., Emurlaev K.I., Kuper K.E., Safarova D.E., Bataev I.A. Structural transformations during annealing of cold-worked high-entropy alloy Al0.3CoCrFeNi. Izvestiya vuzov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy, 2022, vol. 65 (8), pp. 539–547. DOI: 10.17073/0368-0797-2022-8-539-547. (In Russian). 22. Zhou J.L., Cheng Y.H., Wan Y.X., Chen H., Wang Y.F., Yang J.Y. Strengthening by Ti, Nb, and Zr doping on microstructure, mechanical, tribological, and corrosion properties of CoCrFeNi high-entropy alloys. Journal of Alloys and Compounds, 2024, vol. 984, p. 173819. DOI: 10.1016/j.jallcom.2024.173819. 23. Shi H., Fetzer R., Jianu A., Weisenburger A., Heinzel A., Lang F., Müller G. Infl uence of alloying elements (Cu, Ti, Nb) on the microstructure and corrosion behaviour of AlCrFeNi-based high entropy alloys exposed to oxygen-containing molten Pb. Corrosion Science, 2021, vol. 190, p. 109659. DOI: 10.1016/j.corsci.2021.109659.

RkJQdWJsaXNoZXIy MTk0ODM1