OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 27 No. 3 2025 References 1. Simunovic K., Saric T., Simunovic G. Different approaches to the investigation and testing of the Ni-based selffluxing alloy coatings – A review. Part 1: General facts, wear and corrosion investigations. Tribology Transactions, 2014, vol. 57 (6), pp. 955–979. 2. Koch G.H., Brongers M.P.H., Thompson N.G., Virmani Y.P., Payer J.H. Cost of corrosion in the United States. Handbook of environmental degradation of materials. William Andrew Publishing, 2005, pp. 3–24. DOI: 10.1016/ B978-081551500-5.50003-3. 3. Thompson N.G., Yunovich M., Dunmire D. Cost of corrosion and corrosion maintenance strategies. Corrosion Reviews, 2007, vol. 25 (3–4), pp. 247–262. DOI: 10.1515/CORRREV.2007.25.3-4.247. 4. Baorong H.O.U., Dongzhu L.U. Corrosion cost and preventive strategies in China. Bulletin of Chinese Academy of Sciences, 2018, vol. 33 (6), pp. 601–609. DOI: 10.16418/j.issn.1000-3045.2018.06.008. (In Chinese). 5. Mariani F.E., Rêgo G.C., Neto A.L., Totten G.E., Casteletti L.C. Wear behavior of a borided nickel-based self-fluxing thermal spray coating. Materials Performance and Characterization, 2016, vol. 5 (4). DOI: 10.1520/ MPC20150064. 6. Vidaković I., Šimunović K., Heffer G., Špada V. Microstructural analysis of flame-sprayed and PTA-deposited nickel-based self-fluxing alloy coatings. Welding in the World, 2024, vol. 68 (11), pp. 2819–2836. DOI: 10.1007/ s40194-024-01814-5. 7. Kretinin V.I., Teppoev A.V., Sokolova V.A., Polyanskaya O.A., Alekseeva S.V. Justification of strengthening of working bodies of forestry machines with self-fluxing alloys during gas-flame spraying. IOP Conference Series: Earth and Environmental Science, 2021, vol. 876 (1), p. 012045. DOI: 10.1088/1755-1315/876/1/012045. 8. Dong X.Y., Luo X.T., Zhang S.L., Li C.J. A novel strategy for depositing dense self-fluxing alloy coatings with sufficiently bonded splats by one-step atmospheric plasma spraying. Journal of Thermal Spray Technology, 2020, vol. 29, pp. 173–184. DOI: 10.1007/s11666-019-00943-4. 9. Liu C.W., Qin E.W., Chen G.X.,Wei S.C., ZouY.,Ye L.,Wu S.H. Effect of flame remelting on the microstructure, wear and corrosion resistance of HVOF sprayed NiCrBSi coatings. Advanced Materials Research, 2024, vol. 1179, pp. 157–168. DOI: 10.4028/p-v2xcOL. 10. Shuecamlue S., Taman A., Khamnantha P., Banjongprasert C. Influences of flame remelting and WC-Co addition on microstructure, mechanical properties and corrosion behavior of NiCrBSi coatings manufactured via HVOF process. Surfaces and Interfaces, 2024, vol. 48, p. 104135. DOI: 10.1016/j.surfin.2024.104135. 11. Shabanlo M., Amini Najafabadi R., Meysami A. Evaluation and comparison the effect of heat treatment on mechanical properties of NiCrBSi thermally sprayed coatings. Anti-Corrosion Methods and Materials, 2018, vol. 65 (1), pp. 34–37. DOI: 10.1108/ACMM-02-2017-1756. 12. Xuan H.N., Chen L., Li N.,Wang H., Zhao C., BobrovM., Lu S., Zhang L. Temperature profile, microstructural evolution, and wear resistance of plasma-sprayed NiCrBSi coatings under different powers in a vertical remelting way. Materials Chemistry and Physics, 2022, vol. 292, p. 126773. DOI: 10.1016/j.matchemphys.2022.126773. 13. Fayomi O.S.I.,Akande I.G., Odigie S. Economic impact of corrosion in oil sectors and prevention: an overview. Journal of Physics: Conference Series, 2019, vol. 1378 (2), p. 022037. DOI: 10.1088/1742-6596/1378/2/022037. 14. Kania H. Corrosion and anticorrosion of alloys/metals: the important global issue. Coatings, 2023, vol. 13 (2), p. 216. DOI: 10.3390/coatings13020216. 15. Shekari E., Khan F., Ahmed S. Economic risk analysis of pitting corrosion in process facilities. International Journal of Pressure Vessels and Piping, 2017, vol. 157, pp. 51–62. DOI: 10.1016/j.ijpvp.2017.08.005. 16. Zlobin S.B., Ulianitsky V.Yu., Shtertser A.A., Smurov I. High-velocity collision of hot particles with solid substrate, under detonation spraying: detonation splats. Thermal Spray: Expanding Thermal Spray Performance to New Markets and Applications. ASM, 2009, pp. 714–717. DOI: 10.31399/asm.cp.itsc2009p0714. 17. Tucker R.C. Jr. Structure property relationships in deposits produced by plasma spray and detonation gun techniques. Journal of Vacuum Science and Technology, 1974, vol. 11 (4), pp. 725–734. DOI: 10.1116/1.1312743. 18. Sundararajan G., Sen D., Sivakumar G. The tribological behaviour of detonation sprayed coatings: the importance of coating process parameters. Wear, 2005, vol. 258 (1–4), pp. 377–391. DOI: 10.1016/j.wear.2004.03.022. 19. Sirota V.V., Zaitsev S.V., Prokhorenkov D.S., Limarenko M.V., Skiba A.A., Churikov A.S., Dan’shin A.L. Detonation application of a hard composite coating to cutters for centrifugal beet shredders. Russian Engineering Research, 2023, vol. 43 (9), pp. 1142–1145. DOI: 10.3103/s1068798x23090216.
RkJQdWJsaXNoZXIy MTk0ODM1