ОБРАБОТКА МЕТАЛЛОВ Том 27 № 3 2025 198 МАТЕРИАЛОВЕДЕНИЕ M.M. Rehman,W.Young Kim // Nanomaterials. –2021. – Vol. 11 (1). – P. 242. – DOI: 10.3390/nano11010242. 2. Stable and fast-response capacitive humidity sensors based on a ZnO nanopowder/PVP-RGO multilayer / H. Yang, Q. Ye, R. Zeng, J. Zhang, L. Yue, M. Xu, Z.-J. Qiu, D. Wu // Sensors. – 2017. – Vol. 17 (10). – P. 2415. – DOI: 10.3390/s17102415. 3. Facile assembly of fl exible humidity sensors based on nanostructured graphite/zinc oxide-coated cellulose fi brous frameworks for human healthcare / Z. Ullah, G.M. Mustafa, A.Raza, A. Khalil, A.A. Awadh Bahajjaj, R. Batool,N.I. Sonil, I.Ali,M.F.Nazar //RSCAdvances. – 2024. – Vol. 14 (50). – P. 37570–37579. – DOI: 10.1039/ D4RA05761A. 4. Hydrophobic multifunctional fl exible sensors with a rapid humidity response for long-term respiratory monitoring / Y. Sun, X. Gao, A. Shiwei, H. Fang, M. Lu, D. Yao, C. Lu // ACS Sustainable Chemistry & Engineering. – 2023. – Vol. 11 (6). – P. 2375–2386. – DOI: 10.1021/acssuschemeng.2c06162. 5. Fast-speed, highly sensitive, fl exible humidity sensors based on a printable composite of carbon nanotubes and hydrophilic polymers / S. Ding, T. Yin, S. Zhang, D. Yang, H. Zhou, S. Guo, Q. Li, Y. Wang, Y. Yang, B. Peng, R. Yang, Z. Jiang // Langmuir. – 2023. – Vol. 39 (4). – P. 1474–1481. – DOI: 10.1021/acs. langmuir.2c02827. 6. Selective encapsulation of ionic liquids in UiO66-NH2 nanopores for enhanced humidity sensing / K. Wu, X. Miao, H. Zhao, S. Liu, T. Fei, T. Zhang // ACS Applied Nano Materials. – 2023. – Vol. 6 (10). – P. 9050–9058. – DOI: 10.1021/acsanm.3c01727. 7. Self-powered graphene oxide humidity sensor based on potentiometric humidity transduction mechanism / D. Lei, Q. Zhang, N. Liu, T. Su, L. Wang, Z. Ren, Z. Zhang, J. Su, Y. Gao // Advanced Functional Materials. – 2022. – Vol. 32 (10). – P. 2107330. – DOI: 10.1002/adfm.202107330. 8. A highly sensitive and stable rGO: MoS2-based chemiresistive humidity sensor directly insertable to transformer insulating oil analyzed by customized electronic sensor interface / M.R. Adib, Y. Lee, V.V. Kondalkar, S. Kim, K. Lee // ACS Sensors. – 2021. – Vol. 6 (3). – P. 1012–1021. – DOI: 10.1021/ acssensors.0c02219. 9. TiO2-SnS2 nanoheterostructures for highperformance humidity sensor / W. Yu, D. Chen, J. Li, Z. Zhang // Crystals. – 2023. – Vol. 13 (3). – P. 482. – DOI: 10.3390/cryst13030482. 10. Baig M.F.W., Hasany S.F., Shirazi M.F. Green synthesis of nano graphite materials from lemon and orange peel: A sustainable approach for carbonbased materials // Engineering Proceedings. – 2023. – Vol. 46 (1). – P. 42. – DOI: 10.3390/engproc2023046042. 11. Synthesis and characterization of silver– zinc oxide nanocomposites for humidity sensing / E. Dare, B. Adanu-Ogbole, F. Oladoyinbo, F. Makinde, A.O. Uzosike // Nano Select. – 2023. – Vol. 4 (4). – P. 255–262. – DOI: 10.1002/nano.202200106. 12. Synthesis and study of stable and size-controlled ZnO–SiO2 quantum dots: Application as a humidity sensor / M.A. Mahjoub, G. Monier, C. Robert-Goumet, F. Réveret, M. Echabaane, D. Chaudanson, M. Petit, L. Bideux, B. Gruzza // The Journal of Physical Chemistry C. – 2016. – Vol. 120 (21). – P. 11652– 11662. – DOI: 10.1021/acs.jpcc.6b00135. 13. Heterojunctions of ZnO-nanorod-decorated WO3 nanosheets coated with ZIF-71 for humidity-independent NO2 sensing / L. Qian, C. Fang, Y. Gui, K. Tian, H. Guo, D. Guo, X. Guo, P. Liu // ACSApplied Nano Materials. – 2023. – Vol. 6(14). – P. 13216–13226. – DOI: 10.1021/ acsanm.3c01955. 14. Sensing performance of nanocrystalline graphite-based humidity sensors / T.Y. Ling, S.H. Pu, S.J. Fishlock, Y. Han, J.D. Reynolds, J.W. McBride, H.M.H. Chong // IEEE Sensors Journal. – 2019. – Vol. 19 (14). – P. 5421–5428. – DOI: 10.1109/ JSEN.2019.2905719. 15. Ultrathin glass-based fl exible, transparent, and ultrasensitive surface acoustic wave humidity sensor with ZnO nanowires and graphene quantum dots / J. Wu, C. Yin, J. Zhou, H. Li, Y. Liu, Y. Shen, S. Garner, Y. Fu, H. Duan // ACS Applied Materials & Interfaces. – 2020. – Vol. 12 (35). – P. 39817–39825. – DOI: 10.1021/ acsami.0c09962. 16. Dinç Zor Ş., Cankurtaran H. Impedimetric humidity sensor based on nanohybrid composite of conducting poly (diphenylamine sulfonic acid) // Journal of Sensors. – 2016. – Vol. 2016 (1). – P. 5479092. – DOI: 10.1155/2016/5479092. 17. Enhancement of the humidity sensing performance in Mg-doped hexagonal ZnO microspheres at room temperature / C. Lin, H. Zhang, J. Zhang, C. Chen // Sensors. – 2019. – Vol. 19 (3). – P. 519. – DOI: 10.3390/s19030519. 18. Design of a humidity sensor for a PPE kit using a fl exible paper substrate / P. Chaudhary, A. Verma, S. Chaudhary, M. Kumar, M.-F. Lin, Y.-C. Huang, K.-L. Chen, B.C. Yadav // Langmuir. – 2024. – Vol. 40 (18). – P. 9602–9612. – DOI: 10.1021/acs. langmuir.4c00366. 19. Zinc oxide anchored porous reduced graphene oxide: Electrode material for sensing of ezetimibe / N.P. Agadi, N.L. Teradal, D.H. Manjunatha, J. Seetharamappa // Journal of The Electrochemical Society. – 2024. – Vol. 171 (3). – P. 037513. – DOI: 10.1149/1945-7111/ad2f78. 20. Capacitively coupled contactless conductivity detection (C4D) of ZnO nanostructures gas sensor by
RkJQdWJsaXNoZXIy MTk0ODM1