OBRABOTKAMETALLOV Vol. 27 No. 3 2025 199 MATERIAL SCIENCE addingAu: Pd metal with response to ethanol and acetone vapor / N. Hongsith, S. Chansuriya, B. Yatmontree, S. Uai // Journal of Physics: Conference Series. – 2023. – Vol. 2653 (1). – P. 012062. – DOI: 10.1088/17426596/2653/1/012062. 21. Non-crystal-RuOx/crystalline-ZnO composites: controllable synthesis and high-performance toxic gas sensors / N. Luo, H. Cai, X. Li, M. Guo, C. Wang, X. Wang, P. Hu, Z. Cheng, J. Xu // Journal of Materials ChemistryA. – 2022. – Vol. 10 (28). – P. 15136–15145. – DOI: 10.1039/D2TA02856E. 22. Electrochemical immunosensor for detection of H. pylori secretory protein VacA on g-C3N4/ZnO nanocomposite-modifi ed Au electrode / K. Saxena, A. Kumar, N. Chauhan, M. Khanuja, B.D. Malhotra, U. Jain // ACS Omega. – 2022. – Vol. 7 (36). – P. 32292– 32301. – DOI: 10.1021/acsomega.2c03627. 23. Zinc oxide-based sensor prepared by modifi ed sol–gel route for detection of low concentrations of ethanol,methanol, acetone, and formaldehyde / R. Dhahri, M. Benamara, K.I. Nassar, E.B. Elkenany, A.M. AlSyadi // Semiconductor Science and Technology. – 2024. – Vol. 39 (11). – P. 115021. – DOI: 10.1088/13616641/ad825e. 24. Hussain S., Hasany S., Ali S.U. Hematite decorated MWCNT nanohybrids: A facile synthesis // Journal of the Chemical Society of Pakistan. – 2022. – Vol. 44 (5). – P. 480–489. – DOI: 10.52568/001121/ JCSP/44.05.2022. 25. Doroftei C., Leontie L. Porous nanostructured gadolinium aluminate for high-sensitivity humidity sensors // Materials. – 2021. – Vol. 14 (22). – P. 7102. – DOI: 10.3390/ma14227102. 26. Enhanced acetone gas sensing performance of ZnO polyhedrons decorated with LaFeO3 nanoparticles / H. Zhang, L. Liu, C. Huang, S. Liang, G. Jiang // Materials Research Express. – 2023. – Vol. 10 (9). – P. 095902. – DOI: 10.1088/2053-1591/acf6f8. 27. Room-temperature benzene sensing with Audoped ZnO nanorods/exfoliated WSe2 nanosheets and density functional theory simulations / D. Zhang, W. Pan, L. Zhou, S. Yu // ACS Applied Materials & Interfaces. – 2021. – Vol. 13 (28). – P. 33392–33403. – DOI: 10.1021/ acsami.1c03884. 28. Reversible exsolution of dopant improves the performance of Ca2Fe2O5 for chemical looping hydrogen production / D. Hosseini, F. Donat, P.M. Abdala, S.M. Kim, A.M. Kierzkowska, C.R. Müller // ACS Applied Materials & Interfaces. – 2019. – Vol. 11 (20). – P. 18276–18284. – DOI: 10.1021/acsami.8b16732. 29. Anodic shock-triggered exsolution of metal nanoparticles from perovskite oxide / W. Fan, B. Wang, R. Gao, G. Dimitrakopoulos, J. Wang, X. Xiao, L. Ma, K. Wu, B. Yildiz, J. Li // Journal of the American Chemical Society. – 2022. – Vol. 144 (17). – P. 7657– 7666. – DOI: 10.1021/jacs.1c12970. 30. Photovoltaic and impedance analysis of dyesensitizedsolar cellswithcounter electrodesofmanganese dioxide and silver-doped manganese dioxide / W. Shah, R.W. Khwaja, S.M. Faraz, Z.H. Awan, M.H. Sayyad // Engineering Proceedings. – 2023. – Vol. 46 (1). – P. 31. – DOI: 10.3390/engproc2023046031. 31. Printed carbon nanotubes-based fl exible resistive humidity sensor / X. Zhang, D. Maddipatla, A.K. Bose, S. Hajian, B.B. Narakathu, J.D. Williams, M.F. Mitchell, M.Z. Atashbar // IEEE Sensors Journal. – 2020. – Vol. 20 (21). – P. 12592–12601. – DOI: 10.1109/ JSEN.2020.3002951. 32. Novel copper oxide-integrated carbon paste tirofi ban voltammetric sensor / M. Al-Bonayan, J.T. Althakafy, A.Q. Alorabi, N.A. Alamrani, E.H. Aljuhani, O. Alaysuy, S.D. Al-Qahtani, N.M. ElMetwaly // ACS Omega. – 2023. – Vol. 8 (5). – P. 5042– 5049. – DOI: 10.1021/acsomega.2c07790. 33. Ultrafast responsive humidity sensor based on roasted gram derived carbon quantum dots: experimental and theoretical study / P. Chaudhary, D.K. Maurya, S. Yadav, A. Pandey, R.K. Tripathi, B.C. Yadav // Sensors andActuators B: Chemical. – 2021. – Vol. 329. – P. 129116. – DOI: 10.1016/j.snb.2020.129116. 34. Lee J., Cho D., Jeong Y. A resistive-type sensor based on fl exible multi-walled carbon nanotubes and polyacrylic acid composite fi lms // SolidState Electronics. – 2013. – Vol. 87. – P. 80–84. – DOI: 10.1016/j.sse.2013.05.001. 35. Wearable humidity sensor based on porous graphene network for respiration monitoring / Y. Pang, J. Jian, T. Tu, Z. Yang, J. Ling, Y. Li, X. Wang, Y. Qiao, H. Tian, Y. Yang, T.-L. Ren // Biosensors and Bioelectronics. – 2018. – Vol. 116. – P. 123–129. – DOI: 10.1016/j.bios.2018.05.038. 36. Kumar U., Yadav B.C. Development of humidity sensor using modifi ed curved MWCNT based thin fi lm with DFT calculations // Sensors and Actuators B: Chemical. – 2019. – Vol. 288. – P. 399–407. – DOI: 10.1016/j.snb.2019.03.016. 37. Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/ graphene hybrid nanocomposite / D. Zhang, H. Chang, P. Li, R. Liu, Q. Xue // Sensors and Actuators B: Chemical. – 2016. – Vol. 225. – P. 233–240. – DOI: 10.1016/j.snb.2015.11.024. 38. Ultrahigh humidity sensitivity of graphene oxide / H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus // Scientifi c Reports. – 2013. – Vol. 3 (1). – P. 2714. – DOI: 10.1038/srep02714. 39. Synthesis and characterizations of exohedral functionalized graphene oxide with iron nanoparticles
RkJQdWJsaXNoZXIy MTk0ODM1