Fabrication, characterization and performance evaluation of zinc oxide doped nanographite material as a humidity sensor

OBRABOTKAMETALLOV Vol. 27 No. 3 2025 203 MATERIAL SCIENCE 22. Saxena K., Kumar A., Chauhan N., Khanuja M., Malhotra B.D., Jain U. Electrochemical immunosensor for detection of H. pylori secretory protein VacA on g-C3N4/ZnO nanocomposite-modifi ed Au electrode. ACS Omega, 2022, vol. 7 (36), pp. 32292–32301. DOI: 10.1021/acsomega.2c03627. 23. Dhahri R., Benamara M., Nassar K.I., Elkenany E.B., Al-Syadi A.M. Zinc oxide-based sensor prepared by modifi ed sol–gel route for detection of low concentrations of ethanol, methanol, acetone, and formaldehyde. Semiconductor Science and Technology, 2024, vol. 39 (11), p. 115021. DOI: 10.1088/1361-6641/ad825e. 24. Hussain S., Hasany S., Ali S.U. Hematite decorated MWCNT nanohybrids: A facile synthesis. Journal of the Chemical Society of Pakistan, 2022, vol. 44 (5), pp. 480–489. DOI: 10.52568/001121/JCSP/44.05.2022. 25. Doroftei C., Leontie L. Porous nanostructured gadolinium aluminate for high-sensitivity humidity sensors. Materials, 2021, vol. 14 (22), p. 7102. DOI: 10.3390/ma14227102. 26. Zhang H., Liu L., Huang C., Liang S., Jiang G. Enhanced acetone gas sensing performance of ZnO polyhedrons decorated with LaFeO3 nanoparticles. Materials Research Express, 2023, vol. 10 (9), p. 095902. DOI: 10.1088/20531591/acf6f8. 27. Zhang D., Pan W., Zhou L., Yu S. Room-temperature benzene sensing with Au-doped ZnO nanorods/ exfoliated WSe2 nanosheets and density functional theory simulations. ACS Applied Materials & Interfaces, 2021, vol. 13 (28), pp. 33392–33403. DOI: 10.1021/acsami.1c03884. 28. Hosseini D., Donat F., Abdala P.M., Kim S.M., Kierzkowska A.M., Müller C.R. Reversible exsolution of dopant improves the performance of Ca2Fe2O5 for chemical looping hydrogen production. ACS Applied Materials & Interfaces, 2019, vol. 11 (20), pp. 18276–18284. DOI: 10.1021/acsami.8b16732. 29. Fan W., Wang B., Gao R., Dimitrakopoulos G., Wang J., Xiao X., Ma L., Wu K., Yildiz B., Li J. Anodic shock-triggered exsolution of metal nanoparticles from perovskite oxide. Journal of the American Chemical Society, 2022, vol. 144 (17), pp. 7657–7666. DOI: 10.1021/jacs.1c12970. 30. Shah W., Khwaja R.W., Faraz S.M., Awan Z.H., Sayyad M.H. Photovoltaic and impedance analysis of dyesensitized solar cells with counter electrodes of manganese dioxide and silver-doped manganese dioxide. Engineering Proceedings, 2023, vol. 46 (1), p. 31. DOI: 10.3390/engproc2023046031. 31. Zhang X., Maddipatla D., Bose A.K., Hajian S., Narakathu B.B., Williams J.D., Mitchell M.F., Atashbar M.Z. Printed carbon nanotubes-based fl exible resistive humidity sensor. IEEE Sensors Journal, 2020, vol. 20 (21), pp. 12592–12601. DOI: 10.1109/JSEN.2020.3002951. 32. Al-Bonayan A.M., Althakafy J.T., Alorabi A.Q., Alamrani N.A., Aljuhani E.H., Alaysuy O., Al-Qahtani S.D., El-Metwaly N.M. Novel copper oxide-integrated carbon paste tirofi ban voltammetric sensor. ACS Omega, 2023, vol. 8 (5), pp. 5042–5049. DOI: 10.1021/acsomega.2c07790. 33. Chaudhary P., Maurya D.K., Yadav S., Pandey A., Tripathi R.K., Yadav B.C. Ultrafast responsive humidity sensor based on roasted gram derived carbon quantum dots: experimental and theoretical study. Sensors and Actuators B: Chemical, 2021, vol. 329, p. 129116. DOI: 10.1016/j.snb.2020.129116. 34. Lee J., Cho D., Jeong Y. A resistive-type sensor based on fl exible multi-walled carbon nanotubes and polyacrylic acid composite fi lms. Solid-State Electronics, 2013, vol. 87, pp. 80–84. DOI: 10.1016/j.sse.2013.05.001. 35. Pang Y., Jian J., Tu T., Yang Z., Ling J., Li Y., Wang X., Qiao Y., Tian H., Yang Y., Ren T.-L. Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosensors and Bioelectronics, 2018, vol. 116, pp. 123–129. DOI: 10.1016/j.bios.2018.05.038. 36. Kumar U., Yadav B.C. Development of humidity sensor using modifi ed curved MWCNT based thin fi lm with DFT calculations. Sensors and Actuators B: Chemical, 2019, vol. 288, pp. 399–407. DOI: 10.1016/j.snb.2019.03.016. 37. Zhang D., Chang H., Li P., Liu R., Xue Q. Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sensors and Actuators B: Chemical, 2016, vol. 225, pp. 233–240. DOI: 10.1016/j.snb.2015.11.024. 38. Bi H., Yin K., Xie X., Ji J., Wan S., Sun L., Terrones M., Dresselhaus M.S. Ultrahigh humidity sensitivity of graphene oxide. Scientifi c Reports, 2013, vol. 3 (1), p. 2714. DOI: 10.1038/srep02714. 39. Kumar K., Kumar U., Singh M., Yadav B.C. Synthesis and characterizations of exohedral functionalized graphene oxide with iron nanoparticles for humidity detection. Journal of Materials Science: Materials in Electronics, 2019, vol. 30 (14), pp. 13013–13023. DOI: 10.1007/s10854-019-01663-9. 40. Zhao C.-L., QinM., LiW.-H., Huang Q.-A. Enhanced performance of a CMOS interdigital capacitive humidity sensor by graphene oxide. 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2011, pp. 1954–1957. DOI: 10.1109/TRANSDUCERS.2011.5969243. 41. Wang G., Gao Q., Ke N., Si F., Wang J., Ding J., Zhang W., Fan X. Highly sensitive fl exible humidity sensors with fast response and recovery times based on the composite of graphene oxide and WS 2 for detection of human

RkJQdWJsaXNoZXIy MTk0ODM1