OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 27 No. 3 2025 33. Chaudhary P., Maurya D.K., Yadav S., Pandey A., Tripathi R.K., Yadav B.C. Ultrafast responsive humidity sensor based on roasted gram derived carbon quantum dots: experimental and theoretical study. Sensors and Actuators B: Chemical, 2021, vol. 329, p. 129116. DOI: 10.1016/j.snb.2020.129116. 34. Lee J., Cho D., Jeong Y. A resistive-type sensor based on flexible multi-walled carbon nanotubes and polyacrylic acid composite films. Solid-State Electronics, 2013, vol. 87, pp. 80–84. DOI: 10.1016/j.sse.2013.05.001. 35. Pang Y., Jian J., Tu T., Yang Z., Ling J., Li Y., Wang X., Qiao Y., Tian H., Yang Y., Ren T.-L. Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosensors and Bioelectronics, 2018, vol. 116, pp. 123–129. DOI: 10.1016/j.bios.2018.05.038. 36. Kumar U., Yadav B.C. Development of humidity sensor using modified curved MWCNT based thin film with DFT calculations. Sensors and Actuators B: Chemical, 2019, vol. 288, pp. 399–407. DOI: 10.1016/j.snb.2019.03.016. 37. Zhang D., Chang H., Li P., Liu R., Xue Q. Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sensors and Actuators B: Chemical, 2016, vol. 225, pp. 233–240. DOI: 10.1016/j.snb.2015.11.024. 38. Bi H., Yin K., Xie X., Ji J., Wan S., Sun L., Terrones M., Dresselhaus M.S. Ultrahigh humidity sensitivity of graphene oxide. Scientific Reports, 2013, vol. 3 (1), p. 2714. DOI: 10.1038/srep02714. 39. Kumar K., Kumar U., Singh M., Yadav B.C. Synthesis and characterizations of exohedral functionalized graphene oxide with iron nanoparticles for humidity detection. Journal of Materials Science: Materials in Electronics, 2019, vol. 30 (14), pp. 13013–13023. DOI: 10.1007/s10854-019-01663-9. 40. Zhao C.-L., QinM., LiW.-H., Huang Q.-A. Enhanced performance of a CMOS interdigital capacitive humidity sensor by graphene oxide. 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2011, pp. 1954–1957. DOI: 10.1109/TRANSDUCERS.2011.5969243. 41. Wang G., Gao Q., Ke N., Si F., Wang J., Ding J., Zhang W., Fan X. Highly sensitive flexible humidity sensors with fast response and recovery times based on the composite of graphene oxide and WS 2 for detection of human breath and fingertip proximity. Journal of Materials Chemistry C, 2025, vol. 13 (10), pp. 4929–4937. DOI: 10.1039/ D4TC05303F. 42. Kim H.-S., Kang J.-H., Hwang J.-Y., Shin U.S. Wearable CNTs-based humidity sensors with high sensitivity and flexibility for real-time multiple respiratory monitoring. Nano Convergence, 2022 , vol. 9 (1), p. 35. DOI: 10.1186/ s40580-022-00326-6. Conflicts of Interest The authors declare no conflict of interest. 2025 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).
RkJQdWJsaXNoZXIy MTk0ODM1