Obrabotka Metallov. 2016 no. 2(71)
ОБРАБОТКА МЕТАЛЛОВ № 2 (71) 2016 39 ОБОРУДОВАНИЕ. инструменты 6. Soler Ya.I., Nguyen M.T. Poisk optimal’noi zernistosti nitridborovykh krugov pri ploskom shlifovanii detalei iz stali 06Kh14N6D2MVT-Sh po mikrorel’efu poverkhnosti v usloviyakh modelirovaniya nechetkoi logiki [Search for optimal grain size of nitride-boron wheels during flat grinding of parts made of 06Х14Н6Д2МВТ-Ш steel on surface microrelief under conditions of fuzzy logic simulation]. Vestnik MGTU im. N.E. Baumana. Seriya “Mashi- nostroenie” – Herald of the Bauman Moscow State Technical University. Series “Mechanical Engineering” , 2015, no. 6, pp. 96–111. (In Russian). doi: 10.18698/0236-3941-2015-6-96-111 7. Koushal K., Gour S., Mitra T. Advanced applications of neural networks and artificial intelligence: a re- view. International Journal Information Technology and Computer Science , 2012, no. 6, pp. 57–68. doi: 10.5815/ ijitcs.2012.06.08 8. Oludele A., Olawale J . Neural networks and its application in engineering. Proceedings of Informing Science & IT Education Conference (InSITE) , Macon, GA, USA, 2009, pp. 83–95. 9. Nasr М.S., Moustafa М.A.E., Seif H.E.S., Kobrosy G.E. Application of Artificial Neural Network (ANN) for the prediction of ELAGAMY wastewater treatment plant performance-EGYPT. Alexandria Engineering Journal , 2012, vol. 51, iss. 1, pp. 37–43. doi: 10.1016/j.aej.2012.07.005 10. Dadvandipour S. Experimental applications of artificial neural networks in engineering processing system. Analecta , 2014, vol. 8, no. 2, pp. 28–33. 11. Quintana G., Garcia-Romeu M.L., Ciurana J. Surface roughness monitoring application based on artificial neural networks for ball-end milling operations. Journal of Intelligent Manufacturing , 2011, vol. 22, iss. 4, pp. 607– 617. doi: 10.1007/s10845-009-0323-5 12. Sick B. On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research. Mechanical systems and signal processing , 2002, vol. 16, iss. 4, pp. 487–546. doi: 10.1006/mssp.2001.1460 13. Caydas U., Hascalik A. A study on surface roughness in abrasive waterjet machining process using artifi- cial neural networks and regression analysis method. Journal of Materials Processing Technology , 2008, vol. 202, iss. 1–3, pp. 574–582. doi: 10.1016/j.jmatprotec.2007.10.024 14. Nazar’eva V.A. Setevaya model’ vybora zernistosti shlifoval’nykh krugov s elementami ispol’zovaniya sistem iskusstvennogo intellekta [A network model of selection of grinding wheel grain with the elements of applica- tion of the artificial intelligence systems]. STIN – Russian Engineering Research , 2016, no. 2, pp. 37–40. (In Russian) 15. GOST 53923–2010. Krugi almaznye i iz kubicheskogo nitrida bora (el’bora) shlifoval’nye. Tekhnicheskie usloviya [State Standard 53923–2010. Diamond and cubic boron nitride (elbor) grinding wheels. Specifications]. Moscow, Standartinform Publ., 2010. 32 p. 16. GOST 53922–2010. Poroshki almaznye i iz kubicheskogo nitrida bora (el’bora). Zernistost’ i zernovoi sostav shlifporoshkov. Kontrol’ zernovogo sostava [State Standard 53922–2010. Diamond and from cubic boron nitride (elbor) powders. Grain and grain size distribution of grinding powders. Test of grain size distribution]. Moscow, Standartinform Publ., 2011. 7 p. 17. GOST 25142–82. Sherokhovatost’ poverkhnosti. Terminy i opredeleniya [State Standard 25142–82. Surface roughness. Terms and definitions]. Moscow, Standards Publ., 1982. 22 p. 18. Hollander M., Wolfe D.A. Nonparametric statistical methods. 2 nd ed. New York, Wiley-Interscience, 1999. 816 p. ISBN-10: 0-4711-9045-4. ISBN-13: 978-0471190455 19. Wheeler D.J., Chambers D.S. Understanding statistical process control . Introduction by W. Edwards Dem- ing. Knoxville, Tennessee, SPC Press, 1992 (Russ. ed.: Uiler D., Chambers D. Statisticheskoe upravlenie protsessa- mi: optimizatsiya biznesa s ispol’zovaniem kontrol’nykh kart Shukharta . Translated from English. Moscow, Al’pina Biznes Buks Publ., 2009. 409 p. ISBN 978-5-9614-0832-4). 20. Vasenkov D.V. Metody obucheniya iskusstvennykh neironnykh setei [Methods for training of artificial neural networks]. Komp’yuternye instrumenty v obrazovanii – Computer Tools in Education , 2007, no. 1, pp. 20–29. 21. Rudoi G.I. Vybor funktsii aktivatsii pri prognozirovanii neironnymi setyami [Selection of the activation func- tion in predicting neural networks]. Mashinnoe obuchenie i analiz dannykh – Machine Learning and Data Analysis , 2011, vol. 1, no. 1, pp. 16–39. 22. Chizhkov A.V. Obuchenie iskusstvennykh neironnykh setei [Training of artificial neural networks]. Infor- matika, vychislitel’naya tekhnika i inzhenernoe obrazovanie – Information, computer techniques and engineering education , 2010, no. 1, pp. 3–7. Available at: http://digital-mag.tti.sfedu.ru/lib/1/2-2010-1.pdf (accessed 20.05.2016) 23. Sharstnev V.L., Vardomatskaya E.Yu. Analiz vozmozhnostei neironnykh setei dlya prognozirovaniya zadach legkoi promyshlennosti [Analysis of neural network capabilities for predicting light industry problems]. Upravlenie ekonomicheskimi sistemami: elektronnyi nauchnyi zhurnal – Management of economic systems. Scientific electronic
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1