Obrabotka Metallov. 2017 no. 2(75)

ОБРАБОТКА МЕТАЛЛОВ № 2 (75) 2017 65 МАТЕРИАЛОВЕДЕНИЕ structured surface lower micro-hardness level (1 160…1 200 HV 0.025 ) then after continuous nitriding (1 370…1 450 HV 0.025 ) is observed. Keywords austenitic stainless steel, frictional treatment, electron beam, plasma, gas-cyclic nitriding, strain-induced martensite, microhardness, roughness, pores. DOI: 10.17212/1994-6309-2017-2-55–66 References 1. Rolinski E. Plasma-assisted nitriding and nitrocarburizing of steel and other ferrous alloys. Thermochemical Surface Engineering of Steels: Improving Materials Performance , 2015, pp. 413–457. doi: 10.1533/978085709652 4.3.413. 2. Gatey A.M., Hosmani S.S., Figueroa C.A., Arya S.B., Singh R.P. Role of surface mechanical attrition treat- ment and chemical etching on plasma nitriding behavior of AISI 304L steel. Surface and Coatings Technology, 2016, vol. 304, pp. 413–424. doi: 10.1016/j.surfcoat.2016.07.020. 3. Leonhardt D., Walton S.G., Fernsler R.F. Fundamentals and applications of a plasma-processing system based on electron-beam ionization . Physics of Plasmas , 2007, vol. 14, p. 057103. doi: 10.1063/1.2712424. 4. Gavrilov N.V., Menshakov A.I. Effect of the electron beam and ion flux parameters on the rate of plas- ma nitriding of an austenitic stainless steel. Technical Physics , 2012, vol. 57, iss. 3, pp. 399–404. doi: 10.1134/ S1063784212030073. 5. Borgioli F., Fossati A., Galvanetto E., Bacci T. Glow-discharge nitriding of AISI 316L austenitic stainless steel: influence of treatment temperature. Surface and Coatings Technology, 2005, vol. 200, iss. 7, pp. 2474–2480. doi: 10.1016/j.surfcoat.2004.07.110. 6. Stinville J.C., Villechaise P., Templier C., Riviere J.P., Drouet M. Plasma nitriding of 316L austenitic stain- less steel: experimental investigation of fatigue life and surface evolution. Surface and Coatings Technology , 2010, vol. 204, iss. 12–13, pp. 1947–1951. doi: 10.1016/j.surfcoat.2009.09.052. 7. Lin Y., Lu J., Wang L., Xu T., Xue Q. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel . Acta Materialia , 2006, vol. 54, iss. 20, pp. 5599–5605. doi: 10.1016/j.actamat.2006.08.014. 8. Gleiter H. Nanocrystalline materials. Progress in Materials Science , 1989, vol. 33, iss. 4, pp. 223–315. doi: 10.1016/0079-6425(89)90001-7. 9. Lu K. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and prop- erties. Materials Science and Engineering R-Reports , 1996, vol. 16, iss. 4, pp. 161–221. doi: 10.1016/0927- 796X(95)00187-5. 10. Tong W.P., Tao N.R., Wang Z.B., Lu J., Lu K. Nitriding iron at lower temperatures. Science , 2003, vol. 299, iss. 5607, pp. 686–688. doi: 10.1126/science.1080216. 11. Tong W.P., Liu C.Z., Wang W., Tao N.R., Wang Z.B., Zuo L., He J.C. Gaseous nitriding of iron with a nano- structured surface layer. Scripta Materialia , 2007, vol. 57, iss. 6, pp. 533–536. doi: 10.1016/j.scriptamat.2007.05.017. 12. Balusamy T., Narayanan T.S.N.S., Ravichandran K., Park I.S., Lee M.H. Plasma nitriding of AISI 304 stain- less steel: role of surface mechanical attrition treatment. Materials Characterization , 2013, vol. 85, pp. 38–47. doi: 10.1016/j.matchar.2013.08.009. 13. Tong W.P, Sun J., Zuo L., He J.C., Lu J. Study on wear and friction resistance of nanocrystalline Fe nitrided at low temperature. Wear , 2011, vol. 271, iss. 5–6, pp. 653–657. doi: 10.1016/j.wear.2010.11.024. 14. Baraz V.R., Kartak B.R., Mineeva O.N. Special features of friction hardening of austenitic steel with unstable γ-phase. Metal science and Heat Treatment , 2011, vol. 52, iss. 9, pp. 473–475. doi: 10.1007/s11041-010-9302-x. 15. Makarov A.V., Osintseva A.L., Yurovskikh A.S., Savrai R.A. Povyshenie tribologicheskikh svoistv austen- itnoi stali 12Kh18N10T nanostrukturiruyushchei friktsionnoi obrabotkoi [Improving the tribological properties of austenitic 12Kh18N10T steel by nanostructuring frictional treatment] . Obrabotka metallov (tekhnologiya, oborudo- vanie, instrumenty) = Metal Working and Material Science, 2015, no. 4 (69), pp. 80–92. doi: 10.17212/1994-6309- 2015-4-80-92. 16. Baraz V.R., Fedorenko O.N. Special features of friction treatment of steels of the spring class. Metal Science and Heat Treatment , 2016, vol. 57, iss. 11, pp. 652–655. doi: 10.1007/s11041-016-9937-3. 17. Makarov A.V., Gorkunov E.S., Skorynina P.A., Kogan L.Kh., Yurovskikh A.S., Osintseva A.L. Eddy-current control of the phase composition and hardness of metastable austenitic steel after different regimes of nanostructur-

RkJQdWJsaXNoZXIy MTk0ODM1