Obrabotka Metallov 2019 Vol. 21 No. 1
OBRABOTKAMETALLOV Vol. 21 No. 1 2019 15 TECHNOLOGY 2. Popov V.Y., Yanyushkin A.S. Adhesion-diffusion interaction of contact surfaces with the treatment diamond grinding wheels. Eastern European Scientific Journal , 2014, no. 2, pp. 301–310. doi: 10.12851/EESJ201404ART46. 3. Badger J., Murphy S., O’Donnell G.E. Loading in grinding: chemical reactions in steels and stainless steels. Advanced Materials Research , 2010, no. 126–128, pp. 597–602. doi: 10.4028/www.scientific.net/AMR.126-128.597. 4. Marinescu I.D., Hitchiner M.P., Uhlmann E., Rowe W.B., Inasaki. Handbook of machining with grinding wheels . Boca Raton, CRC Press, 2016. 724 p. ISBN 978-1482206685. 5. Grzesik W., Kruszynski B., Ruszaj A. surface integrity of machined surfaces . Surface integrity in machining . Ed. by J. Davim. London, Springer, 2010, pp. 143–179. 6. Mu S.H., Cao S.L., Zhang X.L., Xiang Z., Mao X. The impact of grinding on surface integrity of powder- metallurgy high-speed steel (S390). Applied Mechanics and Materials , 2013, vol. 442, pp. 52–57. doi: 10.4028/www. scientific.net/AMM.442.52. 7. Ma L., Liang Z., Wang X., Zhao W., Jiao L., Liu Z. Influence of pulsed magnetic treatment on microstructures and mechanical properties of M42 high speed steel tool. Acta Metall , 2015, vol. 51 (3), pp. 307–314. doi: 10.11900/ 0412.1961.2014.00295. 8. Chaus A.S. Structural and phase changes in carbides of the high-speed steel upon heat treatment. The Physics of Metals and Metallography , 2016, vol. 117 (7), pp. 684–692. doi: 10.1134/S0031918X16070048. 9. Zhou X.F., Fang F., Li F., Jiang J.Q. Morphology andmicrostructure of M 2 C carbide formed at different cooling rates in AISI M2 high speed steel. Journal of Materials Science , 2011, vol. 46 (5), pp. 1196–1202. doi: 10.1007/s10853-010-4895-4. 10. Gümüş S., Atapek S.H., Polat S., Erisir E., Alkan A. Microstructural characterization of carbides in a cast high-speed steel using different metallographic techniques. Praktische Metallographie , 2012, vol. 49 (12), pp. 767– 781. doi: 10.3139/147.110202. 11. Krajnik P., Drazumeric R., Badger J., Kopac J., Nicolescu C. Particularities of grinding high speed steel punching tools. Advanced Materials Research , 2011, vol. 325, pp. 177–182. doi: 10.4028/www.scientific.net/ AMR.325.177. 12. Lao Q.C., Shang Z.Y. Experimental study on cooling-air grinding of high speed steel. Applied Mechanics and Materials , 2013, vol. 288, pp. 308–312. doi: 10.4028/www.scientific.net/AMM.288.308. 13. Zhou X., Liu D., Zhu W.-l., Fang F., Tu Y.-y., Jiang J.-q. Morphology, microstructure and decomposition behavior of M 2 C carbides in high speed steel. Journal of Iron and Steel Research , 2017, vol. 24 (1), pp. 43–49. doi: 10.1016/S1006-706X(17)30007-9. 14. Wiessner M., LeischM., Emminger H., KulmburgA. Phase transformation study of a high speed steel powder by high temperatureX-raydiffraction. MaterialsCharacterization , 2008, vol. 59 (7), pp. 937–943. doi: 10.1016/j.matchar.2007.08.002. 15. Bosheh S.S., Mativenga P. White layer formation in hard turning of H13 tool steel at high cutting speeds using CBN tooling. International Journal of Machine Tools and Manufacture , 2006, vol. 46 (2), pp. 225–233. doi: 10.1016/j.ijmachtools.2005.04.009. 16. Zhang J., Wang Q., Guo J., WangY. Simulation study on high-speed grinding with single CBN grain. Diamond and Abrasives Engineering , 2017, vol. 37 (4), pp. 1–5. doi: 10.13394/j.cnki.jgszz.2017.4.0001. 17. Ungureanu C., Ibănescu R. Experimental investigation on AECM of high speed steel. Applied Mechanics and Materials , 2014, vol. 657, pp. 221–225. doi: 10.4028/www.scientific.net/AMM.657.221. 18. Vijayan K., Gouthaman N., Rathinam T. A study on the parameters in hard turning of high speed steel. International Journal of Materials Forming and Machining Processes , 2018, vol. 5 (2), pp. 1–12. doi: 10.4018/ IJMFMP.2018070101. 19. YanyushkinA.S., Lobanov D.V., SkeebaV.Yu., Gartfelder V.A., Sekletina L.S. Povyshenie effektivnosti almaznogo instrumenta na metallicheskoi svyazke pri shlifovanii vysokoprochnykh materialov [Enhancing the effectiveness of the diamond metal bond instrument when grinding high-strength materials]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) =Metal Working and Material Science , 2017, no. 3 (76), pp. 17–27. doi: 10.17212/1994-6309-2017-3-17-27. 20. Popov V.Yu., Arkhipov P.V., Rychkov D.A. Adhesive wear mechanism under combined electric diamond grinding. MATEC Web of Conferences , 2017, vol. 129, p. 01002. doi: 10.1051/matecconf/201712901002. 21. Medvedeva O.I., YanyushkinA.S., Popov V.Yu. Vliyanie parametrov elektroalmaznogo shlifovaniya tverdykh splavov na velichinu rastvorennogo sloya [An influence of hard alloys electro-diamond grinding parameters on the amount of dissolved material]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2014, no. 3 (64), pp. 68–75. Conflicts of Interest The authors declare no conflict of interest. 2019 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1