Obrabotka Metallov 2019 Vol. 21 No. 1

OBRABOTKAMETALLOV Vol. 21 No. 1 2019 15 TECHNOLOGY 2. Popov V.Y., Yanyushkin A.S. Adhesion-diffusion interaction of contact surfaces with the treatment diamond grinding wheels. Eastern European Scientific Journal , 2014, no. 2, pp. 301–310. doi: 10.12851/EESJ201404ART46. 3. Badger J., Murphy S., O’Donnell G.E. Loading in grinding: chemical reactions in steels and stainless steels. Advanced Materials Research , 2010, no. 126–128, pp. 597–602. doi: 10.4028/www.scientific.net/AMR.126-128.597. 4. Marinescu I.D., Hitchiner M.P., Uhlmann E., Rowe W.B., Inasaki. Handbook of machining with grinding wheels . Boca Raton, CRC Press, 2016. 724 p. ISBN 978-1482206685. 5. Grzesik W., Kruszynski B., Ruszaj A. surface integrity of machined surfaces . Surface integrity in machining . Ed. by J. Davim. London, Springer, 2010, pp. 143–179. 6. Mu S.H., Cao S.L., Zhang X.L., Xiang Z., Mao X. The impact of grinding on surface integrity of powder- metallurgy high-speed steel (S390). Applied Mechanics and Materials , 2013, vol. 442, pp. 52–57. doi: 10.4028/www. scientific.net/AMM.442.52. 7. Ma L., Liang Z., Wang X., Zhao W., Jiao L., Liu Z. Influence of pulsed magnetic treatment on microstructures and mechanical properties of M42 high speed steel tool. Acta Metall , 2015, vol. 51 (3), pp. 307–314. doi: 10.11900/ 0412.1961.2014.00295. 8. Chaus A.S. Structural and phase changes in carbides of the high-speed steel upon heat treatment. The Physics of Metals and Metallography , 2016, vol. 117 (7), pp. 684–692. doi: 10.1134/S0031918X16070048. 9. Zhou X.F., Fang F., Li F., Jiang J.Q. Morphology andmicrostructure of M 2 C carbide formed at different cooling rates in AISI M2 high speed steel. Journal of Materials Science , 2011, vol. 46 (5), pp. 1196–1202. doi: 10.1007/s10853-010-4895-4. 10. Gümüş S., Atapek S.H., Polat S., Erisir E., Alkan A. Microstructural characterization of carbides in a cast high-speed steel using different metallographic techniques. Praktische Metallographie , 2012, vol. 49 (12), pp. 767– 781. doi: 10.3139/147.110202. 11. Krajnik P., Drazumeric R., Badger J., Kopac J., Nicolescu C. Particularities of grinding high speed steel punching tools. Advanced Materials Research , 2011, vol. 325, pp. 177–182. doi: 10.4028/www.scientific.net/ AMR.325.177. 12. Lao Q.C., Shang Z.Y. Experimental study on cooling-air grinding of high speed steel. Applied Mechanics and Materials , 2013, vol. 288, pp. 308–312. doi: 10.4028/www.scientific.net/AMM.288.308. 13. Zhou X., Liu D., Zhu W.-l., Fang F., Tu Y.-y., Jiang J.-q. Morphology, microstructure and decomposition behavior of M 2 C carbides in high speed steel. Journal of Iron and Steel Research , 2017, vol. 24 (1), pp. 43–49. doi: 10.1016/S1006-706X(17)30007-9. 14. Wiessner M., LeischM., Emminger H., KulmburgA. Phase transformation study of a high speed steel powder by high temperatureX-raydiffraction. MaterialsCharacterization , 2008, vol. 59 (7), pp. 937–943. doi: 10.1016/j.matchar.2007.08.002. 15. Bosheh S.S., Mativenga P. White layer formation in hard turning of H13 tool steel at high cutting speeds using CBN tooling. International Journal of Machine Tools and Manufacture , 2006, vol. 46 (2), pp. 225–233. doi: 10.1016/j.ijmachtools.2005.04.009. 16. Zhang J., Wang Q., Guo J., WangY. Simulation study on high-speed grinding with single CBN grain. Diamond and Abrasives Engineering , 2017, vol. 37 (4), pp. 1–5. doi: 10.13394/j.cnki.jgszz.2017.4.0001. 17. Ungureanu C., Ibănescu R. Experimental investigation on AECM of high speed steel. Applied Mechanics and Materials , 2014, vol. 657, pp. 221–225. doi: 10.4028/www.scientific.net/AMM.657.221. 18. Vijayan K., Gouthaman N., Rathinam T. A study on the parameters in hard turning of high speed steel. International Journal of Materials Forming and Machining Processes , 2018, vol. 5 (2), pp. 1–12. doi: 10.4018/ IJMFMP.2018070101. 19. YanyushkinA.S., Lobanov D.V., SkeebaV.Yu., Gartfelder V.A., Sekletina L.S. Povyshenie effektivnosti almaznogo instrumenta na metallicheskoi svyazke pri shlifovanii vysokoprochnykh materialov [Enhancing the effectiveness of the diamond metal bond instrument when grinding high-strength materials]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) =Metal Working and Material Science , 2017, no. 3 (76), pp. 17–27. doi: 10.17212/1994-6309-2017-3-17-27. 20. Popov V.Yu., Arkhipov P.V., Rychkov D.A. Adhesive wear mechanism under combined electric diamond grinding. MATEC Web of Conferences , 2017, vol. 129, p. 01002. doi: 10.1051/matecconf/201712901002. 21. Medvedeva O.I., YanyushkinA.S., Popov V.Yu. Vliyanie parametrov elektroalmaznogo shlifovaniya tverdykh splavov na velichinu rastvorennogo sloya [An influence of hard alloys electro-diamond grinding parameters on the amount of dissolved material]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2014, no. 3 (64), pp. 68–75. Conflicts of Interest The authors declare no conflict of interest.  2019 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1