Obrabotka Metallov 2019 Vol. 21 No. 1

OBRABOTKAMETALLOV Vol. 21 No. 1 2019 89 MATERIAL SCIENCE 13. Creation of heterogeneous materials on the basis of B4C and NI powders by the method of cold spraying with subsequent layer-by-layer laser treatment / V.M. Fomin, A.A. Golyshev, V.F. Kosarev, A.G. Malikov, A.M. Orishich, N.S. Ryashin, A.A. Filippov, V.S. Shikalov // Journal of Applied Mechanics and Technical Physics. – 2017. – Vol. 58, iss. 5. – P. 947– 955. – doi: 10.1134/S0021894417050224. 14. Miracle D.B. Metal matrix composites from science to technological significance // Composites Science and Technology. – 2005. – Vol. 65, N 15–16. – P. 2526–2540. –doi: 10.1016/j.compscitech.2005.05.027. 15. An experimental study of the wear performance of NiCrBSi thermal spray coatings / J. Rodriguez, A. Martin, R. Fernandez, J.E. Fernandez // Wear. – 2003. – N 255 (7–12). – P. 950–955. – doi: 10.1016/ S0043-1648(03)00162-5. 16. Comparative examination of the microstructure and high temperature oxidation performance of NiCrBSi flame sprayed and pack cementation coatings / D. Chaliampalias, G. Vourlias, E. Pavlidou, S. Skolianos, K. Chrissafis, G. Stergioudis //Applied Surface Science. – 2009. – Vol. 255, iss. 6. – P. 3605–3612. – doi: 10.1016/j. apsusc.2008.10.006. 17. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings / C. Guo, J. Zhou, J. Chen, J. Zhao, Y. Yu, H. Zhou // Wear. – 2011. – Vol. 270, iss. 7–8. – P. 492– 498. – doi: 10.1016/j.wear.2011.01.003. 18. Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel / M. Tobar, C.Alvarez, J.Amado, G. Rodriguez,A.Yanez // Surface and Coatings Technology. – 2006. – N 200. – P. 6313–6317. – doi: 10.1016/j.surfcoat.2005.11.093. 19. Dry reciprocating sliding friction and wear response of WC-Ni cemented carbides / K. Bonny, P. Baets, J. Vleugels, S. Huang, B. Lauwers // Tribology Letters. – 2008. – Vol. 31, iss. 3. – P. 199–209. – doi: 10.1007/s11249-008-9352-z. 20. Experimental investigation of the oxygen-assist- ed laser cutting of low-carbon steel by the fiber and СО2 lasers at minimal roughness / А.М. Orishich, А.А. Goly- shev, А.G. Malikov, V.В. Shulyat’ev // Quantum Elec- tronics. – 2014. – Vol. 44, iss. 10. – P. 970–974. – doi: 10.1117/12.2037477. 21. Experimental comparison of laser energy losses in high-quality laser-oxygen cutting of low-carbon steel using radiation from fibre and CO2 lasers / А.М. Or- ishich, А.А. Golyshev, А.G. Malikov, V.В. Shulyat’ev // Quantum Electronics. – 2015. – Vol. 45, iss. 9. – P. 873– 878. – doi: 10.1070/QE2015v045n09ABEH015739. 22. High-quality laser cutting of stainless steel in inert gas atmosphere by ytterbium fibre and CO2 la- sers / А.М. Orishich, А.А. Golyshev, А.G. Malikov, V.В. Shulyat’ev // Quantum Electronics. – 2014. – Vol. 44, iss. 3. – P. 233–238. – doi: 10.1070/QE2014v- 044n03ABEH015320. 23. Низкотемпературная плазма. Т. 18. Высо- коэнергетические процессы обработки материа- лов / О.П. Солоненко, А.П. Алхимов, В.В. Мару- син, Х.М. Рахимянов, А.М. Оришич, Р.А. Салимов, В.Г. Щукин, В.Ф. Косарев; отв. ред. М.Ф. Жуков, В.М. Фомин. – Новосибирск: Наука, 2000. – 425 с. – ISBN 5-02-031528-1. Конфликт интересов Авторы заявляют об отсутствии конфликта интересов.  2019 Авторы. Издательство Новосибирского государственного технического университета. Эта статья доступна по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (https://creativecommons.org/licenses/by/4.0/ )

RkJQdWJsaXNoZXIy MTk0ODM1