Obrabotka Metallov 2019 Vol. 21 No. 2

OBRABOTKAMETALLOV Vol. 21 No. 2 2019 55 TECHNOLOGY Интервалы варьирования Variation intervals Входные параметры Нижний уровень Верхний уровень Средний уровень Нижнее «звездное» плечо Верхнее «звездное» плечо I , A 2 8 5 1 9 T on , мкс 40 150 100 30 200 U , B 50 100 75 45 105 Математическая модель зависимости пара- метра шероховатости, учитывающая масштаб- ный коэффициент, включающий в себя потери энергии импульса и площадь обрабатываемой поверхности, имеет следующий вид:     2 2 ( 0,1425 0, 0003 a on R k I T      2 0, 0005 1, 8015 0, 0493 0, 0642 on U I T U    0, 0015 0, 0001 4, 6094). on IU T U (1) Адекватность модели проверялась по крите- рию Фишера: 2 àäåêâ ðàñ÷ òàáë 2 ó , S F F S   (2)    ðàñ÷ òàáë 3, 29 3, 59. F F (3) Показано, что F табл > F расч при уровне значи- мости α = 0,05. Отсюда можно сделать вывод, что модель является адекватной. Полученная модель – функция отклика сле- дующих переменных: силы тока I , А, времени действия импульса T on , мкс и напряжения U , В. На значение выходного параметра шероховато- сти оказывает влияние совокупность всех трех факторов. На рис. 1 представлена гиперповерхность, от- ражающая зависимость шероховатости поверх- ности от режимов КПЭЭО стали 38Х2Н2МА. Установлено, что при постоянной силе тока I = 3 A максимальное значение параметра шерохо- ватости составляет R a = 3,6 мкм при T on = 100 мкс, U = 75 В, а минимальное значение составляет по R a = 2,4 мкм при T on = 150 мкс, U = 100 В. Показано, что на значение параметра шеро- ховатости квадратичная зависимость силы тока оказывает максимальное влияние вместе с ее ли- Рис. 1. Гиперповерхность регрессионной модели при постоянной силе тока I = 3 А; R a – параметр шеро- ховатости, мкм; T on – время действия импульса, мкс; U – напряжение, В Fig.1. The regression model hypersurface at constant current strength I = 3 A; R a is the roughness parameter, μm; T on – pulse duration, μs; U – voltage, V нейной составляющей. В меньшей степени ока- зывает влияние квадратичная функция напряже- ния и времени. Значения полинома отличаются на 25 % при варьировании величины силы тока в данном диапазоне режимов обработки. На основании факторного эксперимента по- лучена регрессионная модель производительно- сти, учитывающая масштабный коэффициент:    2 (0, 00012 0, 00008 on Q k U T     0, 00018 0, 00184 0, 000001 on I U T U    0, 00003 0, 00004 0, 41085) on IT IU . (4) Полученная модель проверятся по критерию Фишера согласно формулам (2) и (3) и является адекватной.

RkJQdWJsaXNoZXIy MTk0ODM1