Obrabotka Metallov 2019 Vol. 21 No. 3

OBRABOTKAMETALLOV Vol. 21 No. 3 2019 114 MATERIAL SCIENCE 6. Katz J.D., Pickering H.W., Bitler W.R. Low-temperature recrystallization kinetic in nickel electrode-posits. Plating and Surface Finishing , 1980, vol. 67, no. 11, pp. 45–49. 7. Gorelik S.S., Dobatkin S.V., Kaputkina L.M. Rekristallizatsiya metallov i splavov [Recrystallization of metals and alloys]. Moscow, MISiS Publ., 2005. 432 p. 8. Kovenskii I.M., Kuskov V.N., Venediktov A.N., Venediktova I.A., Obukhov A.G. Tekhnologicheskie parametry stabiliziruyushchei obrabotki gal’vanicheskikh pokrytii [Technological parameters of stabilizing treatment of electroplated coatings]. Omskii nauchnyi vestnik = Omsk Scientific Bulletin , 2012, no. 2, pp. 72–74. 9. Kovenskii I.M., Povetkin V.V. O prirode vnutrennikh napryazhenii v elektroliticheskikh osadkakh [On the nature of internal stresses in electrodeposited coatings]. Zhurnal prikladnoi khimii = Journal of Applied Chemistry , 1989, vol. 62, no. 5, pp. 37–44. (In Russian). 10. Gao F., Heinisch H., Kurtz R.J. Diffusion of He interstitials in grain boundaries in α-Fe. Journal of Nuclear Materials , 2006, vol. 351, pp. 133–140. DOI: 10.1016/j.jnucmat.2006.02.015. 11. Smith J.T. Diffusion mechanism for the nickel-activated sintering of molybdenum. Journal of Applied Phys- ics , 1965, vol. 36, pp. 595–560. DOI: 10.1063/1.1714036. 12. Shi X., Luo J. Developing grain boundary diagrams as a materials science tool: a case study of nickel-doped molybdenum. Physical review B , 2011, vol. 84, p. 014105. DOI: 10.1103/PhysRevB.84.014105. 13. Cahn R.W., Haasen P. Physical metallurgy . Pt. 1. 3rd ed. North-Holland Physics Publ., 1983. 816 p. (Russ. ed.: Kan R.U., Khaazen P.T. Fizicheskoe metallovedenie . V 3 t. T. 1. Atomnoe stroenie metallov i splavov . 3 rd ed. Moscow, Metallurgiya Publ., 1987. 640 p.). 14. Gleiter H., Chalmers B. High-angle grain boundaries . New York, Pergamon Press, 1972. 274 p. (Russ. ed.: Gleiter G., Chalmers B. Bol’sheuglovye granitsy zeren . Moscow, Mir Publ., 1974. 375 p.). 15. Bokshtein B.S., Yaroslavtsev A.B. Diffuziya atomov i ionov v tverdykh telakh [Diffusion of atoms and ions in solids]. Moscow, MISiS Publ., 2005. 362 p. ISBN 5-87623-131-2. 16. Novoselov I.I. Kuksin A.Yu., Yanilkin A.V. Koeffitsient diffuzii vakansii i mezhdouzlii vdol’ mezhzerennykh granits naklona v molibdene [The diffusion coefficient of vacancies and interstices along the intergrain tilt boundaries in molybdenum]. Fizika tverdogo tela = Physics of the Solid State , 2014, vol. 56, no. 5, pp. 988–994. (In Russian). 17. Svistunov I.N., Kolokol A.S. Analiz mezhatomnykh potentsialov dlya modelirovaniya vakansionnoi diffuzii v kon-tsentrirovannykh splavakh Fe-Cr [Analysis of interatomic potentials for modeling vacancy diffusion in con- centrated Fe-Cr alloys]. Komp’yuternye issledovaniya i modelirovanie = Computer Research and Modeling , 2018, vol. 10, no. 1, pp. 87–101. DOI: 10.20537/2076-7633-2018-10-1-87-101. 18. Novikov I.I. Defekty kristallicheskogo stroeniya metallov [Defects in the crystalline structure of metals]. Moscow, Metallurgiya Publ., 1975. 208 p. 19. Gottstein G. Physical foundations of materials science . Berlin, Springer, 2004. 502 p. (Russ. ed.: Gottshtain G. Fiziko-khimicheskie osnovy materialovedeniya . Moscow, BINOM Publ., 2009. 400 p.). 20. Kaur I., Mishin Y., Gust W. Fundamentals of grain and interphase boundary diffusion. 3rd, rev. and enl. ed. Chichester, Wiley, 1995. 528 p. ISBN 978-0-471-93819-4. DOI: 10.1016/0921-5093(96)80008-6. 21. Mehrer H. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes . Berlin, Springer, 2010. 651 p. ISBN 978-3-540-71486-6. 22. Hart E.W. On the role of dislocations in bulk diffusion. Acta Metallurgica , 1957, vol. 5, iss. 10, p. 597. DOI: 10.1016/0001-6160(57)90127-X. 23. Belova I.V., Murch G.E. Analysis of the effective diffusivity in nano-crystalline materials. Journal of Meta- stable and Nanocrystalline Materials , 2004, vol. 19, pp. 25–34. DOI: 10.4028/www.scientific.net/JMNM.19.25. 24. Maxwell-Garnett C. Colours in metal glasses and in metallic films. Philosophical Transactions of the Royal Society. Ser. A , 1904, vol. 203, pp. 385–420. DOI: 10.1098/rsta.1904.0024. 25. Wollenberger H.J. Point defects . Physical Metallurgy . Ed. by R.W. Cahn, P. Haasen. Amsterdam, Elsevier, 1996, vol. 1, pp. 1621–1721. ISBN 978-0-444-89875-1. 26. Polukarov Yu.M. Obrazovanie defektov kristallicheskoi reshetki v elektroosazhdennykh metallakh [Forma- tion of crystal lattice defects in electrodeposited metals]. Itogi nauki. Elektrokhimiya [Results of science. Electro- chemistry]. Moscow, 1968, pp. 72–113. 27. Kovenskii I.M., Povetkin V.V. Elektroliticheskie splavy [Electrolytic alloys]. Moscow, Intermet Inzhiniring Publ., 2003. 288 p. ISBN 5-89594-089-7. Conflicts of Interest The authors declare no conflict of interest.  2019 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY li- cense (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1