Obrabotka Metallov 2019 Vol. 21 No. 3

OBRABOTKAMETALLOV Vol. 21 No. 3 2019 139 MATERIAL SCIENCE 3. Fang Z., Griffo A. Lockwood G.T., Liang D.-B. Low coefficient of thermal expansion cermet compositions . Patent US, no. US8323372, 2012. 4. Thiele S., Sempf K., Jaenicke-Roessler K., Berger L.-M., Spatzier J. Thermophysical and microstructural studies on thermally sprayed tungsten carbide-cobalt coatings. Journal of Thermal Spray Technology , 2011, vol. 20, iss. 1–2, pp. 358–365. DOI: 10.1007/s11666-010-9558-0. 5. Chandran M., Hoffman A. Diamond film deposition on WC–Co and steel substrates with a CrN interlayer for tribological applications. Journal of Physics D: Applied Physics , 2016, vol. 49, no. 21. DOI: 10.1088/0022- 3727/49/21/213002. 6. Altıparmak S. Analysis of thermal expansion and micro-delamination phenomenon of cutting tool thin surface coatings in high-speed dry machining. Kirklareli University Journal of Engineering and Science , 2018, vol. 4, iss. 2, pp. 189–211. Available at: https://dergipark.org.tr/download/article-file/618756 (accessed 16.08.2019). 7. Magunov A.N. Lazernaya termometriya tverdykh tel [Laser thermometry of solids]. Moscow, Fizmatlit Publ., 2001. 224 p. ISBN 5-9221-0222-2. 8. Efimovich I.A., Zolotukhin I.S., Shvetsova E.I. ). Sposob opredeleniya temperaturnykh polei v rezhushchei chasti instrumenta v protsesse rezaniya [Method for determination of temperature fields in the cutting part of the instrument in process of cutting]. Patent RF, no. 2442967, 2010. 9. Hidnert P. Thermal expansion of cemented tungsten carbide. Journal of Research of the National Bureau of Standards , 1936, vol. 18, pp. 47–52. Available at: https://nvlpubs.nist.gov/nistpubs/jres/18/jresv18n1p47_ A1b.pdf (accessed 16.08.2019). 10. Kieffer R., Benesovsky F. Hartmetalle . Wien, Springer-Verlag, 1965. 546 p. DOI: 10.1007/978-3-7091- 8127-0 (Russ. ed.: Kiffer R., Benezovskii F. Tverdye splavy . Moscow, Metallurgiya Publ., 1971. 392 p). 11. Tret’yakov V.I. Osnovy metallovedeniya i tekhnologii proizvodstva spechennykh tverdykh splavov [Fundamentals of metallurgy and production technology of sintered hard alloys]. 2 nd ed. Moscow, Metallurgiya Publ., 1976. 528 p. 12. Samoilov V.S., Eikhmans E.F., Fal’kovskii V.A., LoktevA.D., ShkurkinYu.P. Metalloobrabatyvayushchii tverdosplavnyi instrument [Metalworking carbide tools]. Moscow, Mashinostroenie Publ., 1988. 368 p. ISBN 5-217-00263-8. 13. ASM HandBook . Vol. 2. Properties and selection: nonferrous alloys and special-purpose materials . ASM International, 1991. 1328 p. ISBN 978-0871703781. 14. ASM ready reference: thermal properties of metals . ASM International, 2002. 560 p. ISBN 978-0-87170- 768-0. 15. Shinohara K., Ueda F., Tanase T. Thermal expansion coefficient and thermal conductivity of WC based cemented carbides. Journal of the Japan Society of Powder and Powder Metallurgy , 1993, vol. 40, iss. 1, pp. 29–32. DOI: 10.2497/jjspm.40.29. 16. Roebuck B., Gee M.G. Miniaturised thermomechanical tests on hardmetals and cermets. Materials Science and Engineering , 1996, vol. 209, iss. 1–2, pp. 358–365. DOI: 10.1016/0921-5093(95)10134-9. 17. Upadhyaya G.S. Materials science of cemented carbides – an overview. Materials and Design , 2001, vol. 22, iss. 6, pp. 483–489. DOI: 10.1016/S0261-3069(01)00007-3. 18. Wang H., Webb T., Bitler J.W. Study of thermal expansion and thermal conductivity of cemented WC– Co composite. International Journal of Refractory Metals and Hard Materials , 2015, vol. 49, pp. 170–177. DOI: 10.1016/j.ijrmhm.2014.06.009. 19. Katiyar P., Singh P., Singh R., Lava Kumar A. Modes of failure of cemented tungsten carbide tool bits (WC/Co): a study of wear parts. International Journal of Refractory Metals and Hard Materials , 2016, vol. 54, pp. 27–38. DOI: 10.1016/j.ijrmhm.2015.06.018. 20. Ezquerra B.L., Rodriguez N., Sánchez J.M. Comparison of the damage induced by thermal shock in hardmetals and cermets. International Journal of Refractory Metals and Hard Materials , 2016, vol. 61, pp. 147–150. DOI: 10.1016/j.ijrmhm.2016.09.008. 21. Tkalich D., Cailletaud G., Yastrebov V.A., Kane A. A micromechanical constitutive modeling of WC hardmetals using finite-element and uniform field models. Mechanics of Materials , 2016, vol. 105. DOI: 10.1016/j.mechmat.2016.11.007.

RkJQdWJsaXNoZXIy MTk0ODM1