Obrabotka Metallov 2019 Vol. 21 No. 3
OBRABOTKAMETALLOV Vol. 21 No. 3 2019 82 MATERIAL SCIENCE 5. Zhou L., Liu H.J. Effect of 0.5 wt.% hydrogen addition on microstructural evolution of Ti–6Al–4V alloy in the friction stir welding and post-weld dehydrogenation process. Materials Characterization , 2011, vol. 62, iss. 11, pp. 1036–1041. DOI: 10.1116/j.matchar.2011.07.016. 6. Wu L.H., Xue P., Xiao B.L., Ma Z.Y. Achieving superior low-temperature superplasticity for lamellar microstructure in nugget of a friction stir welded Ti-6Al-4V joint. Scripta Materialia , 2016, vol. 122, pp. 26–30. DOI: 10.1116/j.scriptamat.2016.05.020. 7. Li B., Shen Y., Hu W., Luo L. Surface modification of Ti–6Al–4V alloy via friction-stir processing: microstructure evolution and dry sliding wear performance. Surface and Coatings Technology , 2014, vol. 239, pp. 160–170. DOI: 10.1016/j.surfcoat.2013.11.035. 8. Pilchak A.L., Tang W., Sahiner H., Reynolds A.P., Williams J.C. Microstructure evolution during friction stir welding of mill-annealed Ti-6Al-4V. Metallurgical and Materials Transactions A , 2010, vol. 42, iss. 3, pp. 745–762. DOI: 10.1007/s11661-010-0439-4. 9. Wang J., Su J., Mishra R.S., Xu R., Baumann J.A. A preliminary study of deformation behavior of friction stir welded Ti-6Al-4V. Journal of Materials Engineering and Performance , 2014, vol. 23, iss. 8, pp. 3027–3033. DOI: 10.1007/s11665-014-1075-8. 10. Lippold J.C., Livingston J.J. Microstructure evolution during friction stir processing and hot torsion simulation of Ti-6Al-4V. Metallurgical and Materials Transactions A , 2013, vol. 44, iss. 8, pp. 3815–3825. DOI: 10. 1007/ s11661-013-1764-1. 11. Fall A., Fesharaki M., Khodabandeh A., Jahazi M. Tool wear characteristics and effect on microstructure in Ti-6Al-4V friction stir welded joints. Metals , 2007, vol. 6, iss. 11, p. 275. – DOI: 10.3390/met6110275. 12. Edwards P.D., Ramulu M. Comparative study of fatigue and fracture in friction stir and electron beam welds of 24mm thick titanium alloy Ti-6Al-4V. Fatigue and Fracture of Engineering Materials and Structures , 2016, vol. 39, iss. 10, pp. 1226–1240. DOI: 10.1111/ffe.12434. 13. Muzvidziwa M., Okazaki M., Suzuki K., Hirano S. Role of microstructure on the fatigue crack propagation behavior of a friction stir welded Ti–6Al–4V. Materials Science & Engineering A , 2016, vol. 652, pp. 59–68. DOI: 10.1016/j.msea.2015.11.065. 14. Yoon S., Ueji R., Fujii H. Effect of initial microstructure on Ti–6Al–4V joint by friction stir welding. Materials and Design , 2015, vol. 88, pp. 1269–1276. DOI: 10.1016/j.matdes.2015.09.128. 15. Sato Y.S., Susukida S., Kokawa H., Omori T., Ishida K., Imano S., Park S.H.C., Sugimoto I., Hirano S. Wear of cobalt-based alloy tool during friction stir welding of Ti-6Al-4V Alloy. Proceedings of 11th International Symposium on Friction Stir Welding , Cambridge, UK, 2016. 16. Mironov S., Zhang Y., Sato Y.S., Kokawa H. Crystallography of transformed b microstructure in friction stir weldedTi–6Al–4Valloy. ScriptaMaterialia , 2008, vol. 59, iss. 5, pp. 511–514.DOI: 10.1016/j.scriptamat.2008.04.038. 17. Mironov S., Zhang Y., Sato Y.S., Kokawa H. Development of grain structure in b-phase field during friction stir welding of Ti–6Al–4V alloy. Scripta Materialia , 2008, vol. 59, iss. 1, pp. 27–30. DOI: 10.1016/j. scriptamat.2008.04.014. 18. Zhang Y., Sato Y.S., Kokawa H., Park S.H.C., Hirano S. Microstructural characteristics and mechanical properties of Ti–6Al–4V friction stir welds. Materials Science & Engineering A , 2008, vol. 485, pp. 448–455. DOI: 10.1016/j.msea.2007.08.051. 19. Nakazawa T., Tanaka K., Sakairi K., Sato Y.S., Kokawa H., Omori T., Ishida K., Hirano S. Performance of iridium containing nickel base superalloy tool for friction stir welding of Ti-6Al-4V alloy. Proceedings of 11th International Symposium on Friction StirWelding , Cambridge, UK, 2016. 20. Wu L.H., Wang D., Xiao B.L., Ma Z.Y. Tool wear and its effect on microstructure and properties of friction stir processed Ti–6Al–4V. Materials Chemistry and Physics , 2014, vol. 146, iss. 3, pp. 512–522. DOI: 10.1016/j. matchemphys.2014.04.002. 21. Fahrenholtz W.G. Thermodynamic analysis of ZrB 2 –SiC oxidation: formation of a SiC-depleted region. Journal of the American Ceramic Society , 2007, vol. 90, pp. 143–148. DOI: 10.1111/j.1551-2916.2006.01329.x. 22. Panin V.E., Surikova N.S., LiderA.M., BordulevY.S., Ovechkin B.B., Khayrullin R.R., Vlasov I.V. Multiscale mechanism of fatigue fracture of Ti-6A1-4V titanium alloy within the mesomechanical space-time-energy approach. Physical Mesomechanics , 2018, vol. 21, iss. 5, pp. 452–463. DOI: 10.1134/s1029959918050090. Conflicts of Interest The authors declare no conflict of interest. 2019 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1