Obrabotka Metallov 2019 Vol. 21 No. 3

OBRABOTKAMETALLOV Vol. 21 No. 3 2019 82 MATERIAL SCIENCE 5. Zhou L., Liu H.J. Effect of 0.5 wt.% hydrogen addition on microstructural evolution of Ti–6Al–4V alloy in the friction stir welding and post-weld dehydrogenation process. Materials Characterization , 2011, vol. 62, iss. 11, pp. 1036–1041. DOI: 10.1116/j.matchar.2011.07.016. 6. Wu L.H., Xue P., Xiao B.L., Ma Z.Y. Achieving superior low-temperature superplasticity for lamellar microstructure in nugget of a friction stir welded Ti-6Al-4V joint. Scripta Materialia , 2016, vol. 122, pp. 26–30. DOI: 10.1116/j.scriptamat.2016.05.020. 7. Li B., Shen Y., Hu W., Luo L. Surface modification of Ti–6Al–4V alloy via friction-stir processing: microstructure evolution and dry sliding wear performance. Surface and Coatings Technology , 2014, vol. 239, pp. 160–170. DOI: 10.1016/j.surfcoat.2013.11.035. 8. Pilchak A.L., Tang W., Sahiner H., Reynolds A.P., Williams J.C. Microstructure evolution during friction stir welding of mill-annealed Ti-6Al-4V. Metallurgical and Materials Transactions A , 2010, vol. 42, iss. 3, pp. 745–762. DOI: 10.1007/s11661-010-0439-4. 9. Wang J., Su J., Mishra R.S., Xu R., Baumann J.A. A preliminary study of deformation behavior of friction stir welded Ti-6Al-4V. Journal of Materials Engineering and Performance , 2014, vol. 23, iss. 8, pp. 3027–3033. DOI: 10.1007/s11665-014-1075-8. 10. Lippold J.C., Livingston J.J. Microstructure evolution during friction stir processing and hot torsion simulation of Ti-6Al-4V. Metallurgical and Materials Transactions A , 2013, vol. 44, iss. 8, pp. 3815–3825. DOI: 10. 1007/ s11661-013-1764-1. 11. Fall A., Fesharaki M., Khodabandeh A., Jahazi M. Tool wear characteristics and effect on microstructure in Ti-6Al-4V friction stir welded joints. Metals , 2007, vol. 6, iss. 11, p. 275. – DOI: 10.3390/met6110275. 12. Edwards P.D., Ramulu M. Comparative study of fatigue and fracture in friction stir and electron beam welds of 24mm thick titanium alloy Ti-6Al-4V. Fatigue and Fracture of Engineering Materials and Structures , 2016, vol. 39, iss. 10, pp. 1226–1240. DOI: 10.1111/ffe.12434. 13. Muzvidziwa M., Okazaki M., Suzuki K., Hirano S. Role of microstructure on the fatigue crack propagation behavior of a friction stir welded Ti–6Al–4V. Materials Science & Engineering A , 2016, vol. 652, pp. 59–68. DOI: 10.1016/j.msea.2015.11.065. 14. Yoon S., Ueji R., Fujii H. Effect of initial microstructure on Ti–6Al–4V joint by friction stir welding. Materials and Design , 2015, vol. 88, pp. 1269–1276. DOI: 10.1016/j.matdes.2015.09.128. 15. Sato Y.S., Susukida S., Kokawa H., Omori T., Ishida K., Imano S., Park S.H.C., Sugimoto I., Hirano S. Wear of cobalt-based alloy tool during friction stir welding of Ti-6Al-4V Alloy. Proceedings of 11th International Symposium on Friction Stir Welding , Cambridge, UK, 2016. 16. Mironov S., Zhang Y., Sato Y.S., Kokawa H. Crystallography of transformed b microstructure in friction stir weldedTi–6Al–4Valloy. ScriptaMaterialia , 2008, vol. 59, iss. 5, pp. 511–514.DOI: 10.1016/j.scriptamat.2008.04.038. 17. Mironov S., Zhang Y., Sato Y.S., Kokawa H. Development of grain structure in b-phase field during friction stir welding of Ti–6Al–4V alloy. Scripta Materialia , 2008, vol. 59, iss. 1, pp. 27–30. DOI: 10.1016/j. scriptamat.2008.04.014. 18. Zhang Y., Sato Y.S., Kokawa H., Park S.H.C., Hirano S. Microstructural characteristics and mechanical properties of Ti–6Al–4V friction stir welds. Materials Science & Engineering A , 2008, vol. 485, pp. 448–455. DOI: 10.1016/j.msea.2007.08.051. 19. Nakazawa T., Tanaka K., Sakairi K., Sato Y.S., Kokawa H., Omori T., Ishida K., Hirano S. Performance of iridium containing nickel base superalloy tool for friction stir welding of Ti-6Al-4V alloy. Proceedings of 11th International Symposium on Friction StirWelding , Cambridge, UK, 2016. 20. Wu L.H., Wang D., Xiao B.L., Ma Z.Y. Tool wear and its effect on microstructure and properties of friction stir processed Ti–6Al–4V. Materials Chemistry and Physics , 2014, vol. 146, iss. 3, pp. 512–522. DOI: 10.1016/j. matchemphys.2014.04.002. 21. Fahrenholtz W.G. Thermodynamic analysis of ZrB 2 –SiC oxidation: formation of a SiC-depleted region. Journal of the American Ceramic Society , 2007, vol. 90, pp. 143–148. DOI: 10.1111/j.1551-2916.2006.01329.x. 22. Panin V.E., Surikova N.S., LiderA.M., BordulevY.S., Ovechkin B.B., Khayrullin R.R., Vlasov I.V. Multiscale mechanism of fatigue fracture of Ti-6A1-4V titanium alloy within the mesomechanical space-time-energy approach. Physical Mesomechanics , 2018, vol. 21, iss. 5, pp. 452–463. DOI: 10.1134/s1029959918050090. Conflicts of Interest The authors declare no conflict of interest.  2019 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1