Obrabotka Metallov 2019 Vol. 21 No. 3

OBRABOTKAMETALLOV Vol. 21 No. 3 2019 95 MATERIAL SCIENCE 4. Chumaevskii A.V., Kalashnikov K.N., Kalashnikova T.A., Gusarova A.V., Ivanov A.N. Structure modification of AA2024 alloy in the zone of tribological contact during friction under the severe thermomechanical action. AIP Conference Proceedings , 2018, vol. 2051. DOI: 10.1063/1.5083299. 5. Chumaevskii A.V., Kalashnikov K.N., Kalashnikova T.A., Gusarova A.V., Ivanov A.N. Structure of the mate- rial in the formation region of gradient structures of dissimilar metals obtained by friction stir processing. AIP Con- ference Proceedings , 2018, vol. 2051. DOI: 10.1063/1.5083300. 6. Kalashnikov K.N., Tarasov S.Y., Chumaevskii A.V, Fortuna S.V, Eliseev A.A., Ivanov A.N. Towards aging in a multipass friction stir–processed АА2024. The International Journal of Advanced Manufacturing Technology , 2019, vol. 103 (5), pp. 2121–2132. DOI: 10.1007/s00170-019-03631-3. 7. Moskvichev E.N., Skripnyak V.A., Skripnyak V.V., Kozulin A.A., Lychagin D.V. Structure and mechanical properties of aluminum 1560 alloy after severe plastic deformation by groove pressing // Physical Mesomechanics, 2018, vol. 21, pp. 515–522. DOI: 10.1134/S1029959918060061. 8. Zhu C., Cheon J., Tang X., Na S.-J., Cui H. Molten pool behaviors and their influences on welding defects in narrow gap GMAW of 5083 Al-alloy. International Journal of Heat and Mass Transfer , 2018, vol. 126, pp. 1206– 1221. DOI: 10.1016/J.IJHEATMASSTRANSFER.2018.05.132. 9. Guo H., Hu J., Tsai H.L. Formation of weld crater in GMAW of aluminum alloys. International Journal of Heat and Mass Transfer , 2009, vol. 52, pp. 5533–5546. DOI: 10.1016/J.IJHEATMASSTRANSFER.2009.06.028. 10. Prasad V.V., Lingaraju D. Effect of different edge preparations on the tensile and hardness properties of gtaw welded 6082 aluminum alloy. Materials Today: Proceedings , 2017, vol. 4, pp. 157–165. DOI: 10.1016/J. MATPR.2017.01.009. 11. Bai Y., Gao H., Qiu L. Droplet transition for plasma-MIG welding on aluminium alloys. Transactions of Nonferrous Metals Society of China , 2010, vol. 20, pp. 2234–2239. DOI: 10.1016/S1003-6326(10)60634-6. 12. Eliseev A.A., Fortuna S.V., Kalashnikova T.A., Chumaevskii A.V., Kolubaev E.A. Structural phase evolution in ultrasonic-assisted friction stir welded 2195 aluminum alloy joints. Russian Physics Journal , 2017, vol. 60, pp. 1022–1026. DOI: 10.1007/s11182-017-1172-x. 13. Chumaevskii A.V., Eliseev A.A., Filippov A.V., Rubtsov V.E., Tarasov S.Y. Tensile strength on friction stir processed AMg5 (5083) aluminum alloy. AIP Conference Proceedings , 2016, vol. 1783, pp. 5–9. DOI: 10.1063/1.4966320. 14. Fu B., Qin G., Meng X., Ji Y., Zou Y., Lei Z. Microstructure and mechanical properties of newly developed aluminum-lithium alloy 2A97 welded by fiber laser // Materials Science and Engineering A. – 2014. – Vol. 617. – P. 1–11. – DOI: 10.1016/j.msea.2014.08.038. 15. Pardal G., Meco S., Dunn A., Williams S., Ganguly S., Hand D.P., Wlodarczyk K.L . Laser spot welding of laser textured steel to aluminium. Journal of Materials Processing Technology , 2017, vol. 241, pp. 24–35. – DOI: 10.1016/j.jmatprotec.2016.10.025. 16. Paleocrassas A. Feasibility investigation of laser welding aluminum alloy 7075-t6 through the use of a 300W, single-mode, Ytterbium fiber optic laser. North Carolina State University, 2005. 17. Katayama S., Nagayama H., Mizutani M., Kawahito Y. Fibre laser welding of aluminium alloy. Welding International , 2009, vol. 23, pp. 744–752. DOI: 10.1080/09507110902836911. 18. Alzahrani F.S., Abbas I.A. Fractional order theory in a semiconductor medium photogenerated by a focused laser beam. Physical Mesomechanics , 2018, vol. 21, pp. 117–123. DOI: 10.1134/S1029959918020042. 19. Nothdurft S., Springer A., Kaierle S. Influencing the weld pool during laser welding. Advances in laser materials processing . Cambridge, MA, Woodhead Publishing, 2018, ch. 10. DOI: 10.1016/B978-0-08-101252- 9.00010-8. 20. Wang X.B., Ding P., Qi J.F., Xiao R.S., Zuo T.C. Laser-induced plasma in CO(2) laser welding aluminum alloys. Conference on Lasers and Electro-Optics/ Pacific Rim , Shanghai, China, 2009, vol. 1–2, pp. 1083-1084. 21. Gao M., Chen C., Hu M., Guo L., Wang Z., Zeng X. Characteristics of plasma plume in fiber laser welding of aluminum alloy. Applied Surface Science , 2015, vol. 326, pp. 181–186. DOI: 10.1016/j.apsusc.2014.11.136. 22. Beiranvand Z.M., Ghaini F.M., Naffakh-moosavy H., Sheikhi M., Torkamany M.J. Magnesium loss in Nd:YAG pulsed laser welding of aluminum alloys. Metallurgical and Materials Transactions B , 2018, vol. 49 (5), pp. 2896–2905. DOI: 10.1007/s11663-018-1315-7. 23. Yamaoka H. Microstructural control of laser-welded aluminium alloys. Welding International , 2001, vol. 15, pp. 845–850. DOI: 10.1080/09507110109549454. 24. Wang X., Lu F., Wang H.P., Cui H., Tang X., Wu Y. Mechanical constraint intensity effects on solidification cracking during laser welding of aluminum alloys. Journal of Materials Processing Technology , 2015, vol. 218, pp. 62–70. DOI: 10.1016/j.jmatprotec.2014.11.037.

RkJQdWJsaXNoZXIy MTk0ODM1