Obrabotka Metallov 2020 Vol. 22 No. 1

OBRABOTKAMETALLOV Vol. 22 No. 1 2020 133 MATERIAL SCIENCE References 1. Kalashnikov K.N., Rubtsov V.E., Savchenko N.L., Kalashnikova T.A., Osipovich K.S., Eliseev A.A., Chumaevskii A.V. The effect of wire feed geometry on electron beam freeform 3D printing of complex-shaped samples from Ti-6Al-4V alloy. International Journal of Advanced Manufacturing Technology , 2019, vol. 105, iss. 7–8, pp. 3147–3156. DOI: 10.1007/s00170-019-04589-y. 2. Tarasov S.Yu., Filippov A.V., Shamarin N.N., Fortuna S.V., Maier G.G., Kolubaev E.A. Microstructural evolution and chemical corrosion of electron beam wire-feed additively manufactured AISI 304 stainless steel. Journal of Alloys and Compounds , 2019, vol. 803, pp. 364–370. DOI: 10.1016/j.jallcom.2019.06.246. 3. Kolubaev A.V., Tarasov S.Yu., Filippov A.V., Denisova Yu.A., Kolubaev E.A., Potekaev A.I. The features of structure formation in chromium-nickel steel manufactured by a wire-feed electron beam additive process. Russian Physics Journal , 2018, vol. 61, iss. 8, pp. 1491–1498. DOI: 10.1007/s11182-018-1561-9. 4. Tarasov S.Yu., FilippovA.V., Savchenko N.L., Fortuna S.V., Rubtsov V.E., Kolubaev E.A., Psakhie S.G. Effect of heat input on phase content, crystalline lattice parameter, and residual strain in wire-feed electron beam additive manufactured 304 stainless steel. International Journal of Advanced Manufacturing Technology , 2018, vol. 99, iss. 9–12, pp. 2353–2363. DOI: 10.1007/s00170-018-2643-0. 5. Eliseev A.A., Kalashnikova T.A., Gurianov D.A., Rubtsov V.E., Ivanov A.N., Kolubaev E.A. Ultrasonic assisted second phase transformations under severe plastic deformation in friction stir welding of AA2024. Materials Today Communications , 2019, vol. 21, p. 100660. DOI: 10.1016/j.mtcomm.2019.100660. 6. Kalashnikov K.N., Tarasov S.Yu., Chumaevskii A.V., Fortuna S.V., Eliseev A.A., Ivanov A.N. Towards aging in a multipass friction stir–processed АА 2024. International Journal of Advanced Manufacturing Technology , 2019, vol. 103, iss. 5–8, pp. 2121–2132. DOI: 10.1007/s00170-019-03631-3. 7. Abbasi M., Givi M., Bagheri B. Application of vibration to enhance ef fi ciency of friction stir processing. Transactions of Nonferrous Metals Society of Chin , 2019, vol. 29, iss. 7, pp. 1393–1400. DOI: 10.1016/S1003- 6326(19)65046-6. 8. Kumar R.A., Ramesh S., Kedarvignesh E.S., Arulchelvam M.S.A., Anjunath S. Review of friction stir processing of magnesium alloys. Materials Today: Proceedings , 2019, vol. 16, iss. 2, pp. 1320–1324. DOI: 10.1016/j. matpr.2019.05.230. 9. Ma Z.Y. Friction stir processing technology: a review. Metallurgical and Materials Transactions A , 2008, vol. 39, iss. 3, pp. 642–658. DOI: 10.1007/s11661-007-9459-0. 10. Smolin A.Y., Shilko E.V., Astafurov S.V., Kolubaev E.A., Eremina G.M., Psakhie S.G. Understanding the mechanisms of friction stir welding based on computer simulation using particles. Defence Technology , 2018, vol. 14, iss. 6, pp. 643–656. DOI: 10.1016/j.dt.2018.09.003. 11. Kolubaev A.V., Zaikina A.A., Sizova O.V., Ivanov K.V., Filippov A.V., Kolubaev E.A. On the similarity of deformation mechanisms during friction stir welding and sliding friction of the AA5056 alloy. Russian Physics Journal , 2018, vol. 60, iss. 12, pp. 2123–2129. DOI: 10.1007/s11182-018-1335-4. 12. Tarasov S.Yu., Rubtsov V.E., Kolubaev E.A., Gnyusov S.F., Kudinov Y.A. Radioscopy of remnant joint line in a friction stir welded seam. Russian Journal of Nondestructive Testing, 2015, vol. 51, iss. 9, pp. 573–579. DOI: 10.1134/s1061830915090090. 13. Eliseev A.A., Fortuna S.V., Kalashnikova T.A., Chumaevskii A.V., Kolubaev E.A. Structural phase evolution in ultrasonic-assisted friction stir welded 2195 aluminum alloy joints. Russian Physics Journal , 2017, vol. 60, iss. 6, pp. 1022–1026. DOI: 10.1007/s11182-017-1172-x. 14. KolubaevA.V., Kolubaev E.A., Sizova O.V., ZaikinaA.A., Rubtsov V.E., Tarasov S.Yu., Vasiliev P.A. General regularities of the microstructure formation during friction stir welding and sliding friction. Journal of Friction and Wear , 2015, vol. 36, iss. 2, pp. 127–131. DOI: 10.3103/s1068366615020087. 15. Kolubaev E.A. Investigation of the microstructure of joints of aluminum alloys produced by friction stir welding. Russian Physics Journal, 2015, vol. 57, iss. 10, pp. 1321–1327. DOI: 10.1007/s11182-015-0384-1. 16. Eliseev A.A., Fortuna S.V., Kolubaev E.A., Kalashnikova T.A. Microstructure modi fi cation of 2024 aluminum alloy produced by friction drilling. Materials Science and Engineering A , 2017, vol. 691, pp. 121–125. DOI: 10.1016/j.msea.2017.03.040. 17. Tarasov S.Yu., RubtsovV.E., Fortuna S.V., EliseevA.A., ChumaevskyA.V., Kalashnikova T.A., Kolubaev E.A. Ultrasonic-assisted aging in friction stir welding on Al-Cu-Li-Mg aluminum alloy. Welding in the World , 2017, vol. 61, iss. 4, pp. 679–690. DOI: 10.1007/s40194-017-0447-8. 18. Azimi-Roeen G., Kashani-Bozorg S.F., Nosko M., Švec P. Reactive mechanism and mechanical properties of in-situ hybrid nano-composites fabricated from an Al–Fe2O3 system by friction stir processing. Materials Characterization , 2017, vol. 127, pp. 279–287. DOI: 10.1016/j.matchar.2017.03.007.

RkJQdWJsaXNoZXIy MTk0ODM1