Obrabotka Metallov 2020 Vol. 22 No. 1

OBRABOTKAMETALLOV Vol. 22 No. 1 2020 26 TECHNOLOGY 4. Gritsyuk V.G. Rezhimy i tekhnologiya obrabotki bimetallov s nalozheniem elektricheskogo polya. Diss. kand. tekhn. nauk [Modes and processing technology of bimetals with the application of an electric fi eld. PhD eng. sci. diss.]. Voronezh, 2005. 201 p. 5. Neulybin S.D., Shitsyn Yu.D., Kuchev P.S., Gilev I.A. Plazmennaya naplavka medi na stal’ na toke obratnoi polyarnosti [Plasma surfacing of copper on steel at opposite polarity current]. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk = Proceedings of the Samara Scienti fi c Center of the Russian Academy of Sciences , 2014, vol. 16, no. 1–2, pp. 468–471. 6. Ablyaz T.R., Khanov A.M., Khurmatullin O.G. Sovremennye podkhody k tekhnologii elektroerozionnoi obrabotki materialov [Modern approaches to the technology of electric discharge machining of materials]. Perm’, 2012. 112 p. 7. PogoninA.A., BoikoA.F., Blinova T.A. Dispersnyi analiz produktov elektroerozionnoi pretsizionnoi obrabotki [The disperse analysis of products of electroerosive precision processing]. Tekhnologiya Mashinostroeniya = Engineering Technology , 2010, no. 6, pp. 26–28. 8. SlyusarevM.V. Issledovanie parametrov kachestva bimetallicheskikh listov [The study of the quality parameters of bimetallic sheets]. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 9, Issledovaniya molodykh uchenykh = Science Journal of Volgograd State University. Young Scientists’ Research , 2007, no. 6, pp. 176–182. 9. Lee H.T., Tai T.Y. Relationship between EDM parameters and surface crack formation. Journal of Materials Processing Technology , 2003, vol. 142, iss. 3, pp. 676–683. DOI: 10.1016/S0924-0136(03)00688-5. 10. Das S., Klotz M., Klocke F. EDM simulation: fi nite element-based calculation of deformation, microstructure and residual stresses. Journal of Materials Processing Technology , 2003, vol. 142, iss. 2, pp. 434–451. DOI: 10.1016/ S0924-0136(03)00624-1. 11. Zhurin A.V. Metody rascheta tekhnologicheskikh parametrov i elektrodov-instrumentov pri elektroerozionnoi obrabotke . Diss. kand. tekhn. nauk [Methods for calculating process parameters and tool electrodes in EDM. PhD eng. sci. diss.]. Tula, 2005. 132 p. 12. Tang J., Yang X. A thermo-hydraulic modeling for the formation process of the discharge crater in EDM. Procedia CIRP , 2016, vol. 42, pp. 685–690. DOI: 10.1016/j.procir.2016.02.302. 13. Tsai H.C., Yan B.H., Huang F.Y. EDM performance of Cr/Cu-based composite electrodes. International Journal of Machine Tools and Manufacture , 2003, vol. 43, iss. 3, pp. 245–252. DOI: 10.1016/S0890-6955(02)00238-9. 14. Hayakawa S., Sasaki Y., Itoigawa F., Nakamura T. Relationship between occurrence of material removal and bubble expansion in electrical discharge machining. Procedia CIRP , 2013, vol. 6, pp. 174–179. DOI: 10.1016/j. procir.2013.03.095. 15. Shlykov E.S., Sirotenko L.D. Osobennosti obrabotki bimetallicheskikh materialov elektrodami s raznymi fi ziko-mekhanicheskimi svoistvami [Special aspects of bimetal processing with electrode with physical and mechanical properties]. Zhurnal magistrov = Masters Journal , 2016, no. 1, pp. 199–203. 16. Ploshkin V.V. Strukturnye i fazovye prevrashcheniya v poverkhnostnykh sloyakh stalei pri elektroerozionnoi obrabotke. Diss. kand. tekhn.nauk [Structural and phase transformations in the surface layers of steels during electrical discharge machining. PhD eng. sci. diss.]. Moscow, 2006. 281 p. 17. Tao J., Ni J., Shih A.J. Modeling of the anode crater formation in electrical discharge machining. Journal of Manufacturing Science and Engineering , 2012, vol. 134 (1), p. 011002. DOI: 10.1115/1.4005303. 18. Dey S., Roy D.C. Experimental study using different tools/electrodes E.G. copper, graphite on M.R.R of E.D.M process and selecting the best one for maximum M.R.R in optimum condition. International Journal of Modern Engineering Research , 2013, vol. 3, iss. 3, pp. 1263–1267. 19. Weingärtner E., Kuster F., Wegener K. Modeling and simulation of electrical discharge machining. Procedia CIRP , 2012, vol. 2, pp. 74–78. DOI: 10.1016/j.procir.2012.05.043. 20. Janmanee P., Muttamara A. Performance of difference electrode materials in electrical discharge machining of tungsten carbide. Energy Research Journal , 2010, vol. 1, iss. 2, p р . 87–90. DOI: 10.3844/erjsp.2010.87.90. 21. Abbas N.M., SolomonD.G., BahariMd. F.Areviewon current research trends in electrical dischargemachining (EDM). International Journal of Machine Tools & Manufacture , 2007, vol. 47, pp. 1214–1228. DOI: 10.1016/j. ijmachtools.2006.08.026. 22. Yeo S.H., Kurnia W., Tan P.C. Electro-thermal modelling of anode and cathode in micro-EDM. Journal of Physics D: Applied Physics , 2007, vol. 40 (8), pp. 2513–2521. DOI: 10.1088/0022-3727/40/8/015. Con fl icts of Interest The authors declare no con fl ict of interest.  2020 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1