Obrabotka Metallov 2020 Vol. 22 No. 1
OBRABOTKAMETALLOV Vol. 22 No. 1 2020 78 EQUIPMENT. INSTRUMENTS 3. Merritt H.E. Theory of self-excited machine-tool chatter: contribution to machine-tool chatter research – 1. Journal of Engineering for Industry , 1965, vol. 87, no. 4, pp. 447–454. DOI: 10.1115/1.3670861. 4. Hanna N.H., Tobias S.A. A theory of nonlinear regenerative chatter. Journal of Engineering for Industry , 1974, vol. 96, no. 1, pp. 247–255. 5. Tlusty I., Ismail F . Basic non-linearity in Machining Chatter. CIRP Annals , 1981, vol. 30, pp. 299–304. DOI: 10.1016/S0007-8506(07)60946-9. 6. Altinta ş Y., Budak E. Analytical prediction of stability lobes in milling. CIRP Annals , 1995, vol. 44, no. 1, pp. 357–362. DOI: 10.1016/S0007-8506(07)62342-7. 7. Insperger T., Stépán G . Stability of the milling process. Periodica Polytechnica Mechanical Engineering , 2000, vol. 44, no. 1, pp. 47–57. 8. Wiercigroch M., Budak E. Sources of nonlinearities, chatter generation and suppression in metal cutting. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences , 2001, no. 359, pp. 663–693. DOI: 10.1098/rsta.2000.0750. 9. Grabec I. Chaos generated by the cutting process. Physics Letters A , 1986, vol. 117, no. 8, pp. 384–386. DOI: 10.1016/0375-9601(86)90003-4. 10. Balachandran B. Nonlinear dynamics of milling process. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences , 2001, vol. 359, pp. 793–819. 11. Stepan G. Modelling nonlinear regenerative e ff ects in metal cutting. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences , 2001, vol. 359, pp. 739–757. DOI: 10.1098/ rsta.2000.07537. 12. Litak G. Chaotic vibrations in a regenerative cutting process. Chaos Solitons and Fractals , 2002, vol. 13, pp. 1531–1535. DOI: 10.1016/S0960-0779(01)00176-X. 13. Namachchivaya S., Beddini. Spindle speed variation for the suppression of regenerative chatter. Journal of Nonlinear Science , 2003, vol. 13, no. 3, pp. 265–288. DOI: 10.1007/s00332-003-0518-4. 14. Wahi P., Chatterjee A. Regenerative tool chatter near a codimension 2 Hopf point using multiple scales. Nonlinear Dynamics , 2005, vol. 40, no. 4, pp. 323–338. 15. Stépán G., Insperger T., Szalai R. Delay, parametric excitation, and the nonlinear dynamics of cutting processes. International Journal of Bifurcation and Chaos , 2005, vol. 15, no. 9, pp. 2783–2798. DOI: 10.1142/ S0218127405013642. 16. Moradi H., Bakhtiari-Nejad F., Movahhedy M.R., Ahmadian M.T. Nonlinear behaviour of the regenerative chatter in turning process with a worn tool: forced oscillation and stability analysis. Mechanism and Machine Theory , 2010, vol. 45, no. 8, pp. 1050–1066. DOI: 10.1016/j.mechmachtheory.2010.03.014. 17. Gouskov A.M., Voronov S.A., Paris H., Batzer S.A. Nonlinear dynamics of a machining system with two interdependent delays. Communications in Nonlinear Science and Numerical Simulation , 2002, vol. 7, no. 4, pp. 207– 221. DOI: 10.1016/S1007-5704(02)00014-X. 18. Gouskov A.M., Voronov S.A., Kvashnin A.S. Vliyanie krutil’nykh kolebanii na protsess vibrosverleniya [In fl uence of torsion vibrations on process of vibration-drilling]. Vestnik MGTU im. N.E. Baumana. Seriya: Mashinostroenie = Herald of the Bauman Moscow State Technical University. Series: Mechanical Engineering , 2007, no. 1 (66), pp. 3–19. 19. Vasin S.A., Vasin L.A. Sinergeticheskii podkhod k opisaniyu prirody vozniknoveniya i razvitiya avtokolebanii pri tochenii [Synergetic approach to describing the nature and development of self-oscillations in turning]. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering , 2012, no. 1, pp. 11–16. 20. Voronin A.A. Vliyanie ul’trazvukovykh kolebanii na protsess rezaniya zharoprochnykh splavov [In fl uence of the ultrasound oscillations on the cutting process of the high-temperature alloy]. Stanki i instrument = Machines and Tooling , 1960, no. 11, pp. 15–18. 21. Zakovorotny V.L., Lapshin V.P., Gubanova A.A. Opredelenie optimal’nykh traektorii pri obrabotke s uchetom evolyutsii protsessa rezaniya [Determination of optimal trajectories during processing taking into account the evolution of the cutting process]. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta = Vestnik of Don State Technical University , 2014, vol. 14, no. 3 (78). DOI: 10.12737/5715. 22. Zakovorotny V.L., Lapshin V.P., Babenko T.S. Assessing the regenerative effect impact on the dynamics of deformation movements of the tool during turning. Procedia Engineering , 2017, vol. 206, pp. 68–73. DOI: 10.1016/j. proeng.2017.10.439. 23. Zakovorotny V.L., Lukyanov A.D., Gubanova A.A., Khristoforova V.V. Bifurcation of stationary manifolds formed in the neighborhood of the equilibrium in a dynamic system of cutting. Journal of Sound and Vibration , 2016, vol. 368, pp. 174–190. DOI: 10.1016/j.jsv.2016.01.020.
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1