Obrabotka Metallov 2020 Vol. 22 No. 1

OBRABOTKAMETALLOV Vol. 22 No. 1 2020 97 MATERIAL SCIENCE K. Obrtlík, J. Polák // International Journal of Fatigue. – 2015. – Vol. 76. – P. 11–18. – DOI: 10.1016/j. ijfatigue.2014.09.019. 5. Meng B., Fu M.W. Size effect on deformation behavior and ductile fracture in microforming of pure copper sheets considering free surface roughening // Materials and Design. – 2015. – Vol. 83. – P. 400–412. – DOI: 10.1016/j.matdes.2015.06.067. 6. Sangid M.D., Maier H.J., Sehitoglu H. A physi- cally based fatigue model for prediction of crack initia- tion from persistent slip bands in polycrystals // Acta Materialia. – 2011. – Vol. 59, iss. 1. – P. 328–341. – DOI: 10.1016/j.actamat.2010.09.036. 7. Atypical “boomerang” slip traces in [001] nio- bium single crystals deformed at room temperature / D.S.H. Charrier, J. Bonneville, C. Coupeau, Y. Nahas // Scripta Materialia. – 2012. – Vol. 66, iss. 7. – P. 475– 478. – DOI: 10.1016/j.scriptamat.2011.12.019. 8. A comparison of collective dislocation motion from single slip quantitative topographic analysis dur- ing in-situ AFM room temperature tensile tests on Cu and Fe α crystals / C. Kahloun, G. Monnet, S. Queyreau, L.T. Le, P. Franciosi // International Journal of Plastic- ity. – 2016. – Vol. 84. – P. 277–298. – DOI: 10.1016/j. ijplas.2016.06.002. 9. Topological analysis of {110} slip in an alpha- iron crystal from in situ atomic force microscopy / C. Kahloun, L.T. Le, G. Monnet, M.-H. Chavanne, E. Ait, P. Franciosi // Acta Materialia. – 2013. – Vol. 61, iss. 17. – P. 6459–6465. – DOI: 10.1016/j.acta- mat.2013.07.023. 10. Kramer D.E., Savage M.F., Levine L.E. AFM observations of slip band development in Al single crystals // Acta Materialia. – 2005. – Vol. 53, iss. 17. – P. 4655–4664. – DOI: 10.1016/j.actamat.2005.06.019. 11. The Evolution of slip morphology and fatigue crack initiation in surface grains of Ni200 / K.S. Chan, J.W. Tian, B. Yang, P.K. Liaw // Metallurgical and Mate- rials Transactions A. – 2009. – Vol. 40, iss. 11. – P. 2545– 2556. – DOI: 10.1007/s11661-009-9980-4. 12. The fundamental relationships between grain orientation, deformation-induced surface rough- ness and strain localization in an aluminum alloy / M.R. Stoudt, L.E. Levine, A.Creuzigera, J.B. Hub- bard // Materials Science and Engineering: A. – 2011. – Vol. 530, iss. 1. – P. 107–116. – DOI: 10.1016/j. msea.2011.09.050. 13. Investigating the relationship between grain orientation and surface height changes in nickel poly- crystals under tensile plastic deformation / K. Balusu, R. Kelton, E.I. Meletis, H. Huang // Mechanics of Mate- rials. – 2019. – Vol. 134. – P. 165–175. – DOI: 10.1016/j. mechmat.2019.04.011. 14. Microstructure and mechanical properties of Cu and Cu-Zn alloys produced by equal channel an- gular pressing / Z.J. Zhang, Q.Q. Duan, X.H. An, S.D. Wu, G. Yang, Z.F. Zhang // Materials Science and Engineering: A. – 2011. – Vol. 528. – P. 4259–4267. – DOI: 10.1016/j.msea.2010.12.080. 15. Effects of dislocation slip mode on high-cycle fatigue behaviors of ultra fi ne-grained Cu-Zn alloy pro- cessed by equal-channel angular pressing / Z.J. Zhang, X.H. An, P. Zhang, M.X. Yang, G. Yang, S.D. Wu, Z.F. Zhang // Scripta Materialia. – 2013. – Vol. 68. – P. 389–392. – DOI: 10.1016/j.scriptamat.2012.10.036. 16. Mousavi S.E., Meratian M., Rezaeian A. Investi- gation of mechanical properties and fracture surfaces of dual-phase 60–40 brass alloy processed by warm equal- channel angular pressing // Journal of Materials Sci- ence. – 2017. – Vol. 52. – P. 8041–8051. – DOI: 10.1007/ s10853-017-1006-9. 17. Characteristic features of physical and me- chanical properties of ultra fi ne-grained Al–Mg alloy 1560 / V.A. Krasnoveikin, A. Kozulin, V.A. Skripnyak, E.N. Moskvichev, D.V. Lychagin // Inorganic Materi- als: Applied Research. – 2018. – Vol. 9, iss. 9. – P. 389– 392. – DOI: 10.1134/S2075113318020168. 18. Sliding wear behavior of submicrocrystalline pure iron produced by high-pressure torsion straining / H. Kato, Y. Todaka, M. Umemoto, M. Haga, E. Sen- toku // Wear. – 2015. – Vol. 336–337. – P. 58–68. – DOI: 10.1016/j.wear.2015.04.014. 19. Wear resistance and electroconductivity in copper processed by severe plastic deformation / A.P. Zhilyaev, I. Shakhova, A. Belyakov, R. Kaibyshev, T.G. Langdon // Wear. – 2013. – Vol. 305. – P. 89–99. – DOI: 10.1016/j. wear.2013.06.001. 20. ГОСТ Р ИСО 25178-2–2014. Геометрические характеристики изделий (GPS). Структура поверх - ности . Ареал . Ч . 2. Термины , определения и параме - тры структуры поверхности . – М .: Стандартинформ , 2015. – 47 с . 21. Lychagin D.V., Alfyorova E.A. Slip as the basic mechanism for formation of deformation relief struc- tural elements // Physics of the Solid State. – 2017. – Vol. 59, iss. 7. – P. 1433–1439. – DOI: 10.1134/ S1063783417070137. 22. Micromechanical model of deformation-in- duced surface roughening in polycrystalline materials / V.A. Romanova, R. Balokhonov, A. Panin, M.S. Kazach- enok, V.S. Shakhijanov // Physical Mesomechanics. – 2017. – Vol. 13, iss. 3. – P. 324–333. – DOI: 10.1134/ S1029959917030080. 23. Alfyorova E.A., Lychagin D.V. Self-organization of plastic deformation and deformation relief in FCC single crystals // Mechanics of Materials. – 2018. –

RkJQdWJsaXNoZXIy MTk0ODM1