Obrabotka Metallov 2020 Vol. 22 No. 2
OBRABOTKAMETALLOV Vol. 22 No. 2 2020 116 MATERIAL SCIENCE microindentation]. Diagnostics, Resource and Mechanics of materials and structures , 2017, iss. 6, pp. 103–111. DOI: 10.17804/2410-9908.2017.6.103-111. (In Russian). 19. Makarov A.V., Soboleva N.N., Savrai R.A., Malygina I.Yu. Povyshenie mikromekhanicheskikh svoistv i iznosostoikosti khromonikelevogo lazernogo pokrytiya fi nishnoi friktsionnoi obrabotkoi [The improvement of mi- cromechanical properties and wear resistance of chrome-nickel laser coating using the fi nishing friction treatment]. Vektor nauki Tol’yattinskogo gosudarstvennogo universiteta = Vector of sciences. Togliatti State University , 2015, no. 4, pp. 60–67. DOI: 10.18323/2073-5073-2015-4-60-67. 20. ISO 14577-1:2015. Metallic materials instrumented indentation test for hardness and materials parameters. Test method: pt. 1. Publication date: 2015-07. 46 p. 21. State Standard R 8.748-2011. Metals and alloys. Measurement of hardness and other characteristics of ma- terials during instrumental indentation. Pt. 1. Test method. Moscow, Standartinform Publ., 2013. 28 p. (In Russian). 22. Oliver W.C., Pharr J.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research , 1992, vol. 7, iss. 6, pp. 1564–1583. DOI: 10.1557/JMR.1992.1564. 23. Golovin Yu.I. Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-sur- face layers, and fi lms: a review. Physics of the Solid State , 2008, vol. 50, no. 12, pp. 2205–2236. DOI: 10.1134/ S1063783408120019. 24. Makarov A.V., Soboleva N.N., Malygina I.Yu., Osintseva A.L. Formation of wear-resistant chromium-nickel coating with extra high thermal stability by combined laser-and-heat treatment. Metal Science and Heat Treatment , 2015, vol. 57, iss. 3–4, pp. 161–168. DOI: 10.1007/s11041-015-9856-8. 25. Makarov A.V., Soboleva N.N., Malygina I.Yu., Osintseva A.L. Sposob polucheniya teplostoikogo pokrytiya [Method of producing heat-resistant coating]. Patent RF, no. 2492980, 2013. 26. Makarov A.V., Korobov Yu.S., Soboleva N.N., Khudorozhkova Yu.V., Vopneruk A.A., Balu P., Kotte L., Malygina I.Yu., Burov S.V., Stepchenkov A.K. Wear-resistant nickel-based laser clad coatings for high-temperature applications. Letters on Materials , 2019, vol. 9, no. 4, pp. 470–474. DOI: 10.22226/2410-3535-2019-4-470-474. 27. Makarov A.V., Soboleva N.N., Malygina I.Yu., Kharanzhevskiy E.V. Improving the properties of a rapidly crystallized NiCrBSi laser clad coating by high-temperature processing. Journal of Crystal Growth , 2019, vol. 525, pp. 125200-1–125200-5. DOI: 10.1016/j.jcrysgro.2019.125200. 28. Samsonov G.V., Serebryakova T.I., Neronov V.A. Boridy [Borides]. Moscow, Atomizdat Publ., 1975. 376 p. 29. Zolotorevsky V.S. Mekhanicheskie svoistva metallov [Mechanical properties of metals]. 3rd ed., rev. Mos- cow, MISIS Publ., 1998. 398 p. ISBN 5-87623-017-0. 30. Benito J.A., Jorba J., Manero J.M., Roca A. Change of Young’s modulus of cold-deformed pure iron in a ten- sile test. Metallurgical and Materials Transactions A, 2005, vol. 36, iss. 12, pp. 3317–3324. DOI: 10.1007/s11661- 005-0006-6. 31. Yurkova A.I., Mil’man Yu.V., Byakova A.V. Struktura i mekhanicheskie svoistva zheleza posle poverkhnost- noi intensivnoi plasticheskoi deformatsii treniem. II. Mekhanicheskie svoistva nano- i submikrokristallicheskogo zheleza [Structure and mechanical properties of iron rezulted from surface severe plastic deformation by friction: II. Mechanical properties of nano- and submicrocrystalline iron]. Deformatsiya i razrushenie materialov = Deformation and Fracture of Materials , 2009, no. 2, pp. 2–8. 32. Makarov A.V., Savrai R.A., Schastlivtsev V.M., Tabatchikova T.I., Yakovleva I.L., Egorova L.Yu. Structural features of the behavior of a high-carbon pearlitic steel upon cyclic loading. Physics of Metals and Metallography , 2011, vol. 111, iss. 1, pp. 95–109. DOI: 10.1134/S0031918X11010091. 33. Savrai R.A., Makarov A.V., Malygina I.Yu., Rogovaya S.A., Osintseva A.L. Povyshenie prochnosti korrozionnostoikoi austenitnoi stali AISI 321 friktsionnoi obrabotkoi [Improving the strength of the AISI 321 austenitic stainless steel by frictional treatment]. Diagnostics, Resource and Mechanics of materials and structures, 2017, iss. 5, pp. 43–62. DOI: 10.17804/2410-9908.2017.5.043-062. (In Russian). 34. Kosolapova T.Ya, ed. Svoistva, poluchenie i primenenie tugoplavkikh soedinenii [Properties, preparation and application of refractory compounds]. Moscow, Metallurgy Publ., 1986. 928 p. 35. Pugacheva N.B, Michurov N.S., Senaeva E.I., Bykova T.M. Structure and thermophysical properties of aluminum-matrix composites. The Physics of Metals and Metallography , 2016, vol. 117, pp. 1144–1151. DOI: 10.1134/S0031918X16110119. 36. Page T.F., Hainsworth S.V. Using nanoindentation techniques for the characterization of coated systems: A critique. Surface and Coatings Technology , 1993, vol. 61, iss. 1–3, pp. 201–208. DOI: 10.1016/0257-8972(93)90226-E.
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1