Obrabotka Metallov 2020 Vol. 22 No. 2

ОБРАБОТКА МЕТАЛЛОВ Том 22 № 2 2020 148 МАТЕРИАЛОВЕДЕНИЕ 42. Superplasticity in a SiCw-6061Al composite / H. Xiaoxu, L. Qing, C.K. Yao, Y. Mei // Journal of Materials Science Letters. – 1991. – Vol. 10, iss. 16. – P. 964–966. – DOI: 10.1007/BF00722147. 43. Chan K.C., Tong G.Q. The cavitation behavior of a high-strain-rate superplastic Al6061/20SiCw composite under uniaxial and equibiaxial tension // Scripta Materialia. – 1998. – Vol. 38, iss. 11. – P. 1705– 1710. – DOI: 10.1016/S1359-6462(98)00103-1. 44. Chan K.C., Tong G.Q. Strain rate sensitivity of a high-strain-rate superplastic Al6061/20SiCW composite under uniaxial and equibiaxial tension // Materials Letters. – 2001. – Vol. 51, iss. 5. – P. 389–395. – DOI: 10.1016/S0167-577X(01)00326-3. 45. Li X.J., Tan M.J. A study of the strength of P/M 6061Al and composites during high strain rate superplastic deformation // Journal of Materials Science. – 2003. – Vol. 38, iss. 11. – P. 2505–2510. – DOI: 10.1023/A:1023973622567. 46. High strain rate superplasticity in powder metallurgy aluminium alloy 6061 + 20 vol.-%SiCp composite with relatively large particle size / W.J. Kim, Y.S. Lee, S.J. Moon, S.H. Hong // Materials Science and Technology. – 2000. – Vol. 16, iss. 6. – P. 675–680. – DOI: 10.1179/026708300101508261. 47. High-strain-rate superplastic fl ow in 6061 Al composite enhanced by liquid phase / W.J. Kim, S.H. Hong, H.G. Jeong, S.H. Min // Journal of Materials Research. – 2002. – Vol. 17, iss. 1. – P. 65–74. – DOI: 10.1557/JMR.2002.0012. 48. High strain rate superplasticity of a powder metallurgy SiC particulate reinforced 6061 Al composite (6061/SiC/17.5p) / T.G. Nieh, T. Imai, J. Wadsworth, S. Kojima // Scripta Metallurgica et Materialia. – 1994. – Vol. 31, iss. 12. – P. 1685–1690. – DOI: 10.1016/0956- 716X(94)90464-2. 49. High temperature superplasticity and its defor- mation mechanism of AA6063/SiCp / S. Vijayananth, V. Jayaseelan, S.A.A. Daniel, N.M. Kumar // Case Studies in Thermal Engineering. – 2019. – Vol. 14. – P. 100479. – DOI: 10.1016/j.csite.2019.100479. 50. Grishaber R.B., Mishra R.S., Mukherjee A.K. Effect of testing environment on intergranular microsuperplasticity in an aluminum MMC // Materials Science and Engineering: A. – 1996. – Vol. 220, iss. 1–2. – P. 78–84. – DOI: 10.1016/S0921- 5093(96)10462-7. 51. Chan K.C., Han B.Q. High-strain-rate superplasticity of particulate reinforced aluminium matrix composites // International Journal of Mechanical Sciences. – 1998. – Vol. 40, iss. 2–3. – P. 305–311. – DOI: 10.1016/S0020-7403(97)00056-8. 52. Higashi K., Nieh T.G., Wadsworth J. Effect of temperature on the mechanical properties of mechanically-alloyed materials at high strain rates // Acta Metallurgica et Materialia. – 1995. – Vol. 43, iss. 9. – P. 3275–3282. – DOI: 10.1016/0956-7151(95)00047-Y. 53. Tong G.Q., Chan K.C. High-strain-rate superplasticity of an Al–4.4Cu–1.5Mg/21SiCW composite sheet // Materials Science and Engineering: A. – 2000. –Vol. 286, iss. 2. – P. 218–224. –DOI: 10.1016/ S0921-5093(00)00811-X. 54. Mabuchi M., Higashi K. On accommodation helper mechanism for superplasticity in metal matrix composites // Acta Materialia. – 1999. – Vol. 47, iss. 6. – P. 1915–1922. – DOI: 10.1016/S1359-6454(99)00045-2. 55. McLean M. Creep deformation of metal-matrix composites // Composites Science and Technology. – 1985. – Vol. 23, iss. 1. – P. 37–52. – DOI: 10.1016/0266- 3538(85)90010-7. 56. A study of the hot-working behavior of SiC − Al alloy composites and their matrix alloys by hot torsion testing / J.R. Pickens, T.J. Langan, R.O. England, M. Liebson // Metallurgical and Materials Transactions A. – 1987. – Vol. 18, iss. 2. – P. 303–312. – DOI: 10.1007/ BF02825711. 57. Razaghian A., Yu D., Chandra T. Fracture behaviour of a SiC-particle-reinforced aluminium alloy at high temperature // Composites Science and Technology. – 1998. – Vol. 58, iss. 2. – P. 293–298. – DOI: 10.1016/S0266-3538(97)00130-9. 58. Reinforcement and hot workability of aluminium alloy 7075 particulate composites: a review / Q.M.Azpen, B.T.H.T. Baharudin, S. Shamsuddin, F. Mustapha // Journal of Engineering Science and Technology. – 2018. – Vol. 13, iss. 4. – P. 1034–1057. 59. Pal S., Ray K.K., Mitra R. Room temperature mechanical properties and tensile creep behavior of powder metallurgy processed and hot rolled Al and Al– SiCp composites // Materials Science and Engineering A. – 2010. – Vol. 527, iss. 26. – P. 6831–6837 – DOI: 10.1016/j.msea.2010.07.075. 60. Bhattacharyya J.J., Mitra R. Effect of hot rolling temperature and thermal cycling on creep and damage behavior of powder metallurgy processed Al-SiC particulate composite // Materials Science and Engineering A. – 2012. – Vol. 557. – P. 92–105. – DOI: 10.1016/j.msea.2012.06.073. 61. Pandey A.B., Mishra R.S., Mahajan Y.R. Steady state creep behaviour of silicon carbide particulate reinforced aluminium composites // Acta Metallurgica et Materialia. – 1992. – Vol. 40, iss. 8. – P. 2045–2052. – DOI: 10.1016/0956-7151(92)90190-P. 62. Tjong S.C., Ma Z.Y. High-temperature creep behaviour of powder-metallurgy aluminium composites reinforced with SiC particles of various sizes // Composites Science and Technology. – 1999. – Vol. 59, iss. 7. – P. 1117–1125. – DOI: 10.1016/S0266- 3538(98)00151-1.

RkJQdWJsaXNoZXIy MTk0ODM1