Obrabotka Metallov 2020 Vol. 22 No. 2
OBRABOTKAMETALLOV Vol. 22 No. 2 2020 153 MATERIAL SCIENCE fracture locus for a 10 volume-percent B95/SiC metal matrix composite at the near-solidus temperature]. Pis’ma o materialakh = Letters on Materials , 2018, vol. 8, iss. 1, pp. 88–93. DOI: 10.22226/2410-3535-2018-1-88-93. 17. Smirnov S.V., Vichuzhanin D.I., Nesterenko A.V., Pugacheva N.B., Konovalov A.V. A fracture locus for a 50 volume-percent Al/SiC metal matrix composite at high temperature. International Journal of Material Forming , 2017, vol. 10, iss. 5, pp. 831–843. DOI: 10.1007/s12289-016-1323-6. 18. Xiong Z., Geng L., Yao C.K. Investigation of high-temperature deformation behavior of a SiC whisker reinforced 6061 aluminium composite. Composites Science and Technology , 1990, vol. 39, iss. 2, pp. 117–125. DOI: 10.1016/0266-3538(90)90050-F. 19. Razaghian A., Yu D., Chandra T. Fracture behaviour of a SiC-particle-reinforced aluminium alloy at high temperature. Composites Science and Technology , 1998, vol. 58, iss. 2, pp. 293–298. DOI: 10.1016/S0266- 3538(97)00130-9. 20. Boži ć D., Vilotijevi ć M., Rajkovi ć V., Gnjidi ć Ž. Mechanical and fracture behaviour of a SiC-particle- reinforced aluminum alloy at high temperature. Materials Science Forum , 2005, vol. 494, pp. 487–492. DOI: 10.4028/ www.scienti fi c.net/MSF.494.487. 21. Xu W., Jin X., Xiong W., Zeng X., Shan D. Study on hot deformation behavior and workability of squeeze- cast 20 vol%SiCw/6061Al composites using processing map. Materials Characterization , 2018, vol. 135, pp. 154– 166. DOI: 10.1016/j.matchar.2017.11.026. 22. Nieh T.G., Lesuer D.R., Syn C.K. Tensile and fatigue properties of a 25 vol% SiC particulate reinforced 6090 Al composite at 300 °C. Scripta Metallurgica et Materialia , 1995, vol. 32, iss. 5, pp. 707–712. DOI: 10.1016/0956- 716X(95)91590-L. 23. Nieh T.G., Xia K., Langdon T.G. Mechanical properties of discontinuous SiC reinforced aluminum composites at elevated temperatures. Journal of Engineering Materials and Technology , 1988, vol. 110, iss. 2, pp. 77–82. 24. Chawla N., Habel U., Shen Y.-L., Andres C., Jones J.W., Allison J.E. The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites. Metallurgical and Materials Transactions A , 2000, vol. 31, iss. 2, pp. 531–540. DOI: 10.1007/s11661-000-0288-7. 25. Kurbatkina E.I., Kosolapov D.V., Gololobov A.V., Shavnev A.A. Issledovanie struktury i svoistv metallicheskogo kompozitsionnogo materiala sistemy Al–Zn–Mg–Cu/SiC [Study on the structure and properties of Al–Zn–Mg–Cu/SiC composite]. Tsvetnye Metally , 2019, no. 1, pp. 40–45. DOI: 10.17580/tsm.2019.01.06. 26. Kaibychev R., Kazyhanov V., Bampton C.C. Superplastic deformation of the 2009-15% SiCw composite. Key Engineering Materials , 1997, vol. 127, iss. 131, pp. 953–960. DOI: 10.4028/www.scienti fi c.net/KEM.127–131.953. 27. Mishra R.S., Mukherjee A.K., Echer C., Bampton C.C., Bieler T.R. In fl uence of temperature on segregation in 2009 Al-SiCw composite and its implication on high strain rate superplasticity. Scripta Materialia , 1996, vol. 35, iss. 2, pp. 247–252. DOI: 10.1016/1359-6462(96)00118-2. 28. Han B.Q., Chan K.C. High-strain-rate superplasticity of an AL2009-SICw composite. Journal of Materials Science Letters , 1997, vol. 16, iss. 10, pp. 827–829. DOI: 10.1023/A:1018586610298. 29. Chan K.C., Tong G.Q. Deformation and cavitation behavior of a high-strain-rate superplasticAl2009/20SiCW composite. Materials Letters , 2000, vol. 44, iss. 1, pp. 39–44. DOI: 10.1016/S0167-577X(99)00294-3. 30. Wu M.Y., Sherby O.D. Superplasticity in a silicon carbide whisker reinforced aluminum alloy. Scripta Metallurgica , 1984, vol. 18, iss. 8, pp. 773–776. DOI: 10.1016/0036-9748(84)90392-2. 31. Kim H.Y., Hong S.H. High temperature deformation behavior of 20 vol-percent SiCw 2024Al metal matrix composite. Scripta Metallurgica et Materialia , 1994, vol. 30, iss. 3, pp. 297–302. DOI: 10.1016/0956-716X(94)90378-6. 32. González-Doncel G., Sherby O.D. Tensile ductility and fracture of superplastic Aluminum-SiC composites under thermal cycling conditions. Metallurgical and Materials Transactions A , 1996, vol. 27, iss. 9, pp. 2837–2842. 33. Wei Z., Zhang B., Wang Y. Microstructure and superplasticity in a stir – cast SiCp/2024 aluminium composite. Scripta Metallurgica et Materiala , 1994, vol. 30, iss. 11, pp. 1367–1372. DOI: 10.1016/0956-716X(94)90229-1. 34. Bin Z.L., Jintao H., Yanwen W. Plastic working and superplasticity in aluminium-matrix composites reinforced with SiC particulates. Journal of Materials Processing Technology , 1998, vol. 84, iss. 1–3, pp. 271–273. DOI: 10.1016/S0924-0136(98)00233-7. 35. Xiao B., Ma Z., Bi J. Investigation on superplasticity in SiCp/2024 cold rolling sheet after heat treatment. Journal of Materials Science and Technology , 2003, vol. 19, iss. 4, pp. 382–384 36. Nieh T.G., Henshall C.A., Wadsworth J. Superplasticity at high strain rates in a SiC whisker reinforced Al alloy. Scripta Metallurgica , 1984, vol. 18, iss. 12, pp. 1405–1408. DOI: 10.1016/0036-9748(84)90374-0.
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1